K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 10 2020

\(\Leftrightarrow sinx-\frac{1}{2}\left(1-2sin^2x\right)+m+\frac{3}{2}=0\)

\(\Leftrightarrow sin^2x+sinx+1=-m\) (1)

Đặt \(f\left(x\right)=sin^2x+sinx+1\)

Ta có: \(f\left(x\right)=sin^2x+sinx-2+3=\left(sinx-1\right)\left(sinx+2\right)+3\le3\)

\(f\left(x\right)=\left(sinx+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow\frac{3}{4}\le f\left(x\right)\le3\)

\(\Rightarrow\left(1\right)\) có nghiệm khi và chỉ khi: \(\frac{3}{4}\le-m\le3\)

\(\Leftrightarrow-3\le m\le-\frac{3}{4}\)

NV
25 tháng 12 2020

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\) 

Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)

\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)

3 tháng 10 2021

\(1-2cos^2x=m\Rightarrow1-2\cdot\dfrac{1+cos2x}{2}=m\)

                          \(\Rightarrow1-1-cos2x=m\)

                          \(\Rightarrow cos2x=-m\)

Pt có nghiệm: \(\Leftrightarrow\)\(-1\le-m\le1\)

                       \(\Leftrightarrow1\ge m\ge-1\)

29 tháng 8 2021

1.

Phương trình có nghiệm khi \(1+m\in\left[-1;1\right]\Rightarrow m\in\left[-2;0\right]\).

2.

Phương trình có nghiệm khi \(5+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow5+m^2\ge m^2+2m+1\)

\(\Leftrightarrow2m\le4\)

\(\Leftrightarrow m\le2\)

13 tháng 8 2021

1.

a, Phương trình có nghiệm khi: 

\(\left(m+2\right)^2+m^2\ge4\)

\(\Leftrightarrow m^2+4m+4+m^2\ge4\)

\(\Leftrightarrow2m^2+4m\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)

b, Phương trình có nghiệm khi:

\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)

\(\Leftrightarrow2m^2+6m\le0\)

\(\Leftrightarrow-3\le m\le0\)

13 tháng 8 2021

2.

a, Phương trình vô nghiệm khi:

\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)

\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)

\(\Leftrightarrow4m^2-7< 0\)

\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)

b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)

\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)

 Phương trình vô nghiệm khi:

\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)

\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)

\(\Leftrightarrow m^2-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

5 tháng 8 2021

`(m^2+m)cos2x=m^2-m-3-m^2 cos2x`

`<=> (2m^2+m)cos2x=m^2-m-3`

`<=>cos2x =(m^2-m-3)/(2m^2+m)`

PT có nghiệm `<=> -1 <= (m^2-m-3)/(2m^2+m) <=1`

`<=> [(m<=-1 \vee m>=1),(-1/2 < m <0):}`