\(x^2-\left(2m+3\right)x+m=0.\) Gọi x1 x2 là 2 nghiệm của phương trình đã...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Cái náy mình đã tìm ra kết quả nên hiển nhiên sẽ k tick được

Để phương trình có 2 nghiệm phân biệt thì Δ​>0

=> \(\left(2m+3\right)^2-4m>0\\ < =>4m^2-12m+9>0\\ \Leftrightarrow x< \dfrac{4-\sqrt{7}}{2};\dfrac{4+\sqrt{7}}{2}< 0\\ \)

27 tháng 5 2019

pt \(2x^2-\left(m+3\right)x+m=0\) có \(\Delta=\left(-m-3\right)^2-4.2m=m^2-2m+9=\left(m-1\right)^2+8>0\)

nên pt có 2 nghiệm phân biệt x1, xvới mọi m 

Ta có : \(P=\left|x_1-x_2\right|\)\(\Leftrightarrow\)\(P^2=\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=\frac{m+3}{2}\\x_1x_2=\frac{m}{2}\end{cases}}\)

\(\Rightarrow\)\(P^2=\left(\frac{m+3}{2}\right)^2-4.\frac{m}{2}=\frac{m^2-2m+9}{4}=\frac{\left(m-1\right)^2+8}{4}\ge\frac{8}{4}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

... 

27 tháng 5 2019

à quên, \(P^2\ge2\)\(\Leftrightarrow\)\(P\ge\sqrt{2}\) nhé 

26 tháng 3 2020

Theo hệ thức Vi - ét, ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = a\\ {x_1}{x_2} = - 2 \end{array} \right.\)

Theo đề bài, ta có:

\(\begin{array}{l} x_1^2 + \left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) + x_2^2\\ = {\left( {{x_1} + {x_2}} \right)^2} - {x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right)\\ = {a^2} + 2 + 2a\\ = {\left( {a + 1} \right)^2} + 1 \ge 0 \end{array}\)

Vậy GTNN bằng 1 \(\Leftrightarrow a=-1\)

27 tháng 3 2020

Anh Mai Đã sửa

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
5 tháng 4 2021

Ta có:

\(x^2-2\left(m+5\right)x+2m+9=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2m-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m+9\end{cases}}\)

Thế vô làm nốt

14 tháng 4 2018

có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)

                                                                 \(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)

                                                                     \(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)

20 tháng 6 2021

a) Ta có  : \(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)

Để pt có 2 nghiệm phân biêt \(\Leftrightarrow\Delta'>0\Leftrightarrow m< -1\)

b) Theo hệ thức Viet \(\hept{\begin{cases}S=x_1+x_2=-2\left(m+1\right)\\P=x_1x_2=m^2+4m+3\end{cases}}\)

\(\Rightarrow A=m^2+4m+3+4\left(m+1\right)=m^2+4m+3+4m+4=m^2+8m+7\)

c) Ta có : \(A=m^2+8m+7=m^2+8m+16-9=\left(m+4\right)^2-9\ge-9\)

Dấu " = " xảy ra khi <=> m = -4 ( tm m < -1 )

Vậy minA = -9 tại m = -4