Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay tọa độ A và B vào pt \(\Delta\) được 2 giá trị trái dấu \(\Rightarrow A;B\) nằm khác phía so với \(\Delta\)
\(\Rightarrow MA+MB\) nhỏ nhất khi và chỉ khi M nằm trên giao điểm của đường thẳng AB và \(\Delta\)
\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt
Phương trình AB: \(2\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow2x-y+3=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x-y+3=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow M\left(-\dfrac{1}{3};\dfrac{7}{3}\right)\)
Đáp án D
Do M thuộc d nên M( x; 2x+ 3)
Suy ra:
Do đó:
nhỏ nhất khi và chỉ khi: f(x) = 45x2+ 78x + 34 nhỏ nhất
a: Vì a=-1<0 nên hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (-∞;2]
Bảng biến thiên là:
x | -∞ | 2 | +∞ |
y | -∞ | 1 | -∞ |
Gọi \(A\left(a;1-a\right)\) ; \(B\left(b;2b-1\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-1;2-a\right)\\\overrightarrow{MB}=\left(b-1;2b\right)\end{matrix}\right.\)
\(2\overrightarrow{MA}+\overrightarrow{MB}=0\Leftrightarrow\left(2a-2;4-2a\right)+\left(b-1;2b\right)=\left(0;0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-2+b-1=0\\4-2a+2b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=3\\-2a+2b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{5}{3}\\b=-\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow A\left(\frac{5}{3};-\frac{2}{3}\right);B\left(-\frac{1}{3};-\frac{5}{3}\right)\) \(\Rightarrow\overrightarrow{AB}=\left(2;1\right)\)
Phương trình AB:
\(1\left(x-\frac{5}{3}\right)-2\left(y+\frac{2}{3}\right)=0\Leftrightarrow x-2y-3=0\)