Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi phân số cần tìm là \(\dfrac{a}{7}\). Ta có:
\(\dfrac{-5}{9}< \dfrac{a}{7}< \dfrac{-2}{9}\)
\(\Rightarrow\dfrac{-35}{63}< \dfrac{9a}{63}< \dfrac{-14}{63}\)
\(\Rightarrow-35< 9a< -14\)
Mà 9a \(⋮\) 9 nên 9a \(\in\) {-27; -18} \(\Rightarrow\) a \(\in\) {-3; -2}
a, vì \(\frac{3n-1}{7n+5}\)thuộc Z suy ra : 3n - 1 chia hết cho 7n +5 => 7.( 3n - 1 ) chia hết cho 7n + 5
=> 21n - 7 chia hết cho 7n + 5 => 21n + 15 - 22 chia hết cho 7n + 5 => 3.( 7n + 5) - 22 chia hết cho 7n + 5
=> - 22 chia hết cho 7n + 5 ( vì 3.( 7n+ 5) chia hết cho 7n + 5 ) .
=> 7n + 5 là Ư(-22) = { -22, -11 , -2 ; -1; 1, 2, 11, 22 } đến đây dễ rồi bạn tự làm tiếp nhé.
b,vì \(\frac{n^{2014}+n^{2013}+2}{n+1}.\)thuộc Z nên ta có : \(n^{2014}+n^{2013}+2\)chia hết cho n + 1
=> \(n^{2013}\left(n+1\right)+2\)chia hết cho n +1
=> 2 chia hết cho n + 1 ( vì \(n^{2013}\left(n+1\right)\)chia hết cho n + 1 )
=> n + 1 là Ư(2) ={- 2; -1 ; 1; 2 } đến đây bạn tự làm tiếp nhé !
Ta thấy \(n\ge1\)
với \(n=1\Rightarrow n^2+n^5+1=3\)là số nguyên tố
Với n > 1
Ta có \(n^7+n^5+1=\left(n^2+n+1\right)\left(n^5-n^4+n^3-n+1\right)>n^2+n+1>1\)
\(\Rightarrow n^2+n+1\)là ước của\(n^7+n^5+1\)( loại)
\(\Leftrightarrow n=1\)