Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Để olm giúp em, em nhé!
Vì q là số nguyên tố lớn hơn 3 nên q có dạng:
q = 3n + 1 (n là số tự nhiên chẵn vì nếu n lẻ thì q là hợp số loại)
hoặc q = 3n + 2 (n là số tự nhiên lẻ vì nếu n chẵn thì q là hợp số loại)
Xét q = 3n + 1 ta có: p = 3n + 1 + 2 = 3n + 3 ⋮ 3 (loại)
Vậy q có dạng: q = 3n + 2 ⇒ p = 3n + 2 + 2 = 3n + 4
Theo bài ra ta có:
p + q = 3n + 2 + 3n + 4
p + q= 6n + 6 (n là số tự nhiên lẻ)
p + q = 6.(n+1)
Vì n là số lẻ nên n + 1⋮ 2; 6 ⋮ 6 ⇒ p + q ⋮ 12 (đpcm)