\(^{ }\)CHỨNG MINH RẰNG : 2017^2017-1 CHIA HẾT CHO 2016

Trả lời mình nhanh lên! mìn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Ta có

\(2017\equiv1\left(mod2016\right)\)

\(\Rightarrow2017^{2017}-1\equiv\left(1^{2017}-1=\right)0\left(mod2016\right)\)

\(\Rightarrow2017^{2017}-1⋮2016\)

7 tháng 5 2017

\(2013^{2013}=\left(2013^{2012}\right).2013=\left(...1\right).2013=\left(...3\right)\)
\(2017^{2017}=\left(2017^{2016}\right).2017=\left(...1\right).2017=\left(...7\right)\)
\(\Rightarrow2013^{2013}+2017^{2017}=\left(...3\right)+\left(...7\right)=\left(...0\right)⋮10\)

12 tháng 10 2017

\(S=5+5^2+5^3+.......+5^{2010}\)

Vì 2010 : 6 = 335 (nhóm ) nên mỗi nhóm ta ghép 6 số hạng liên tiếp được

\(\Leftrightarrow S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{2005}+5^{2006}+5^{2007}+5^{2008}+5^{2009}+5^{2010}\right)\)

\(\Leftrightarrow S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+....+5^{2005}.\left(1+5+5^2+5^3+5^4+5^5\right)\)

\(\Leftrightarrow S=5.3906+....+5^{2005}.3906\)

\(\Leftrightarrow S=5.126.31+...+5^{2005}.126.31\)

\(\Leftrightarrow126.\left(5.31+....+5^{2005}.31\right)⋮126\)

Vậy S chia hết cho 126

Nhớ k cho mình nhé! Thank you!!!

12 tháng 10 2017

Cảm ơn bạn My Nguyễn Thị Trà nha ! Mình k cho bạn rồi đó

15 tháng 10 2017

S = 5 + 52+53+...+52010

   = (5+54)+(52+55)+(53+56)+(57+510)+...+(52007+52010)

   =5.(1+53)+52.(1+53)+53.(1+53)+57.(1.53)+...+52007.(1+53)

   = 5.126 + 52.126 + 53.126 + 57.126 + ...+ 52007.126

   = 126.(5+52+53+57+...+52007)

Vì \(126⋮126\)

Nên \(126.\left(5+5^2+5^3+5^7+...+5^{2007}\right)⋮126\)

\(\Rightarrow S⋮126\)

12 tháng 10 2017

Mk biết làm nhưng ko biết có đúng cách làm ko

mk học lớp 6

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!