\(x^2+2mx+m^2+m=0\) (với x là ẩn số)

a.Giải phương trình với m=-3<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

a, với =-3

\(=>x^2-6x+6=0\)

\(\Delta=\left(-6\right)^2-4.6=12>0\)

=>pt có 2 nghiệm phân biệt x3,x4

\(=>\left[{}\begin{matrix}x3=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x4=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)

b, \(\Delta=\left(2m\right)^2-4\left(m^2+m\right)=4m^2-4m^2-4m=-4m\)

pt đã cho đề bài có 2 nghiệm phân biệt x1,x2 khi

\(-4m>0< =>m< 0\)

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=-2m\\x1x2=m^2+m\end{matrix}\right.\)

có \(\left(x1-x2\right)\left(x1^2-x2^2\right)=32\)

\(< =>\left(x1-x2\right)^2\left(x1+x2\right)=32\)

\(< =>\left[x1^2-2x1x2+x2^2\right]\left(-2m\right)=32\)

\(< =>\left[\left(x1+x2\right)^2-4x1x2\right]\left(-2m\right)=32\)

\(< =>\left[\left(-2m\right)^2-4\left(m^2+m\right)\right]\left(-2m\right)=32< =>m=2\)(loại)

Vậy \(m\in\varnothing\)

 

 

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:
a. Với $m=-3$ thì pt trở thành:

$x^2-6x+6=0\Leftrightarrow x=3\pm \sqrt{3}$

b. Để pt có 2 nghiệm thì: $\Delta'=m^2-(m^2+m)=-m\geq 0$

$\Leftrightarrow m\leq 0$

Áp dụng định lý Viet: $x_1+x_2=-2m; x_1x_2=m^2+m$

Khi đó:
$(x_1-x_2)(x_1^2-x_2^2)=32$

$\Leftrightarrow (x_1-x_2)^2(x_1+x_2)=32$

$\Leftrightarrow [(x_1+x_2)^2-4x_1x_2](x_1+x_2)=32$

$\Leftrightarrow [(-2m)^2-4(m^2+m)](-2m)=32$

$\Leftrightarrow 8m^2=32$

$\Leftrightarrow m^2=4$

$\Rightarrow m=-2$ (do $m\leq 0$)

Vây.........

27 tháng 3 2020

Xét \(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\)

Để phương trình có 2 nghiệm x1; x2 điều kiện là: 

\(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-2\end{cases}}\)( ***)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1.x_2=4\\x_1+x_2=2m\end{cases}}\)

Theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

<=> \(x_1^2+2x_1+1+x_2^2+2x_2+1=2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

<=> \(\left(2m\right)^2-2.4+2.\left(2m\right)=0\)

<=> \(m^2+m-2=0\)

<=> m = - 2 ( thỏa mãn (***) ) hoặc m = 1 ( không thỏa mãn ***)
Vậy m = - 2.

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

3 tháng 6 2017

Xét pt (1) có:

\(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)

= \(4m^2-4m+8\)

= \(\left(2m-1\right)^2+7>0\)

\(\Rightarrow\) Pt (1) luôn có 2 nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\)

\(\Leftrightarrow2-x_2+2x_1-x_1x_2+2-x_1+2x_2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2+2\) \(\Leftrightarrow-\left(x_1+x_2\right)+2\left(x_1+x_2\right)+2-\left(x_1+x_2\right)^2=0\)

\(\Leftrightarrow-\left(x_1+x_2\right)\left[1-2+\left(x_1+x_2\right)\right]+2=0\)

\(\Leftrightarrow-2m\left(2m-1\right)+2=0\)

\(\Leftrightarrow-4m^2+2m+2=0\)

\(\Leftrightarrow\left(m-1\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-1=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy để pt (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\) thì \(m=1\) hoặc \(m=\dfrac{-1}{2}\)

3 tháng 6 2017

\(\Delta\)' = m2 - m + 2 = m2 - 2.m.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) + 2 = \(\left(m-\dfrac{1}{2}\right)^2\) + \(\dfrac{7}{4}\) \(\ge\) \(\dfrac{7}{4}\) > 0

\(\Rightarrow\) phương trình luôn có 2 nghiệm \(\forall\)m

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)

(1 + x1)(2 - x2) + (1 + x2)(2 - x1) = x12 + x22 + 2

2 - x2 + 2x1 - x1x2 + 2 - x1 + 2x2 - x1x2 = (x1 + x2)2 - 2x1x2 + 2

= (x1 + x2)2 - (x1 + x2) - 2 = 0

thay vào ta có : (2m)2 - 2m - 2 = 0

4m2 - 2m - 2 = 0 ta có : a + b + c = 4 - 2 - 2 = 0

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

m1 = 1 ; m2 = \(\dfrac{c}{a}\) = \(-\dfrac{1}{2}\)

vậy m = 1 ; m = \(-\dfrac{1}{2}\) thảo mảng điều kiện bài toán

4 tháng 4 2019

\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)

Theo vi ét:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)

\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)

\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))

\(\Leftrightarrow2m^2-4m-13=0\)

Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề