\(x^4-5x^2+m=0\)

Tìm \(m\) để phương...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2022

Đặt \(x^2=a\left(a\ge0\right)\)khi đó phương trình tương đương với 

\(a^2-5a+m=0\)(*)

Để phương trình có 4 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt dương 

\(< =>\left\{{}\begin{matrix}\Delta>0\\x_1.x_2>0\\x_1+x_2>0\end{matrix}\right.< =>\left\{{}\begin{matrix}25-4m>0\\m>0\\5>0\end{matrix}\right.\)

\(< =>\dfrac{25}{4}>m>0\)

18 tháng 4 2022

Hì hì chắc chắn đúng phải khum bạn?

14 tháng 4 2019

Để pt có 2 nghiệm phân biệt x1;xthì \(\Delta=\left(-5\right)^2-4\left(-m-4\right)=41+4m>0\Leftrightarrow m>\frac{-41}{4}\)

Với m>-41/4 thì theo hệ thức Vi-et: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=-m-4\end{cases}}\)

\(x_1^2+x_2^2+x_1x_2=19\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=19\Leftrightarrow5^2-\left(-m-4\right)=19\)<=>m=-10(tm m>-41/4)

Vậy...

28 tháng 4 2020

a) \(x_1^2+x_2^2=23\)

\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=23\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)

\(\Leftrightarrow5^2-2\left(m+4\right)=23\)

<=> m=-3

b) \(x_1^3+x_2^3=35\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=35\)

\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=35\)

\(\Leftrightarrow5\left[5^2-3\left(m+4\right)\right]=35\)

<=> m=2

c) \(\left|x_2-x_1\right|=3\)

\(\Leftrightarrow\left(\left|x_2-x_1\right|\right)^2=3^2\)

\(\Leftrightarrow x_1^2-2x_1x_2+x_1^2=3^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)

<=> m=0

28 tháng 4 2020

ĐK để pt có hai nghiệm phân biệt là: \(\Delta>0\Leftrightarrow25-4\left(m+4\right)>0\Leftrightarrow m< \frac{9}{4}\) ( @@) 

Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

Theo định lí Viet ta có: \(x_1+x_2=5;x_1.x_2=m+4\)

a) \(x_1^2+x_2^2=23\)

<=> \(x_1^2+x_2^2+2x_1x_2=23+2x_1x_2\)

<=> \(\left(x_1+x_2\right)^2=23+2x_1x_2\)

=> \(25=23+2\left(m+4\right)\)

<=>m = -3 ( thỏa mãn @@) 

b) \(x_1^3+x_2^3=35\)

<=> \(\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=35\)

=> \(5^3-3.5.\left(m+4\right)=35\)

<=> m = 2 ( thỏa mãn @@) 

c) \(\left|x_2-x_1\right|=3\)

<=> \(\left(x_1-x_2\right)^2=9\)

<=> \(\left(x_1+x_2\right)^2-4x_1x_2=9\)

=> \(5^2-4\left(m+4\right)=9\)

<=> m = 0 ( thỏa mãn @@)

5 tháng 7 2019

Xét phương trình trên có:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=m^2-4m+4-m^2+2m-4=-2m\)

Để phương trình trên có hai nghiệm phân biệt \(x_1;x_2\)điều kiện là:

\(\Delta'>0\Leftrightarrow-2m>0\Leftrightarrow m< 0\)

Với m<0. Áp dụng định lí Vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-2\right)\\x_1.x_2=m^2-2m+4\end{cases}}\)

=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(m-2\right)^2-2\left(m^2-2m+4\right)=2m^2-12m+8\)

Ta có:

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

<=> \(\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)(điều kiện: \(2m^2-12m+8\ne0\))

<=> \(\frac{1}{m^2+4-6m}-\frac{1}{m^2+4-2m}=\frac{1}{15m}\)

<=> \(\frac{4m}{\left(m^2+4-6m\right)\left(m^2+4-2m\right)}=\frac{1}{15m}\)

<=> \(60m^2=\left(m^2+4\right)^2-8m\left(m^2+4\right)+12m^2\)

<=> \(\left(m^2+4\right)^2-8m\left(m^2+4\right)-48m^2=0\)

<=> \(\left(\frac{m^2+4}{m}\right)^2-8\frac{m^2+4}{m}-48=0\)

Đặt t=\(\frac{m^2+4}{m}< 0\)

Ta có phương trình ẩn t:

\(t^2-8t-48=0\Leftrightarrow\orbr{\begin{cases}t=-4\\t=12\left(loai\right)\end{cases}}\)

Với t=-4 ta có:

\(\frac{m^2+4}{m}=-4\Leftrightarrow m^2+4m+4=0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)( tmđk)

vậy m=-2