\(x^2-\left(m+1\right)x+m-4=0\)

m là tham số 
a) Giair pt khi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=1 thì phương trình sẽ là x^2-2x-3=0

=>x=3 hoặc x=-1

b: Δ=(m+1)^2-4(m-4)

=m^2+2m+1-4m+16

=m^2-2m+17

=(m-1)^2+16>=16>0

=>Phương trình luôn có hai nghiệm phân biệt

x1+x2=m+1;x2x1=m-4

(x1^2-mx1+m)(x2^2-mx2+m)=2

 

=>(x1*x2)^2-m*x2*x1^2+m*x1^2-m*x1*x2^2+m*x1*x2-m^2*x1+m*x2^2-m^2*x2+m^2=2

=>(x1*x2)^2-m*x1*x2(x1+x2)+mx1^2+m*(m-4)-m^2*x1+m*x2^2-m^2*x2+m^2=2

=>(m-4)^2-m*(m-4)(m+1)+m(m-4)-m^2(x1+x2)+m*(x1^2+x2^2)+m^2=2

=>(m-4)^2-m(m^2-3m-4)+m^2-4m-m^2(m+1)+m*[(m+1)^2-2(m-4)]+m^2=2

=>m^2-8m+16-m^3+3m^2+4m+m^2-4m-m^3-m^2+m^2+m[m^2+2m+1-2m+8]=2

=>-2m^3+3m^2-8m+16+m^3+9m-2=0

=>-m^3+3m^2+m+14=0

=>\(m\simeq4,08\)

12 tháng 3 2020

Phương trình đã cho có nghiệm\(\Leftrightarrow\Delta'=m-1\ge0\Leftrightarrow m\ge1\)

Theo hệ thức Vi - et, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2-m\end{cases}}\)

\(\Rightarrow m=x_1+x_2-x_1x_2\),Thay vào hệ thức \(2x_1^3+\left(m+2\right)x_2^2=5\),ta được:

\(2x_1^3+\left(2x_1+2x_2-x_1x_2\right)x_2^2=5\)

\(\Leftrightarrow2x_1^3+2x_1x_2^2+2x_2^3-x_1x_2^3=5\)

\(\Leftrightarrow2\left(x_1^3+x_2^3\right)-x_1x_2\left(x_2^2-2x_2\right)=5\)

\(\Leftrightarrow2\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]-x_1x_2\left(x_2^2-2x_2\right)=5\)

Vì x2 là nghiệm nên \(x_2^2-2x_2+2-m=0\)

\(\Leftrightarrow x_2^2-2x_2=m-2\left(1\right)\)

Đến đây tiếp tục dùng viet và tìm được m = 1

P/S: Không chắc

9 tháng 4 2018

tính delta rồi c/m cho (1) luôn có 2 ngiệm phân biệt

áp dụng định lí viet rồi thế vô là tìm dc m rồi xem điều kiên 

rồi kết luận

9 tháng 4 2018

\(x^2+2\left(m+2\right)x+4m-1=0\)    \(\left(1\right)\)  

\(\Delta'=\left(m+2\right)^2-4m+1\)

\(\Delta'=m^2+4m+4-4m+1\)

\(\Delta'=m^2+5>0\forall m\)

\(\Rightarrow pt\left(1\right)\)  luôn có 2 nghiệm pb \(\forall m\)

theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=-2\left(m+2\right)\\x_1.x_2=4m-1\end{cases}}\)

theo bài ra \(x^2_1+x^2_2=30\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-30=0\)

\(\Leftrightarrow\left[-2\left(m+2\right)\right]^2-2.\left(4m-1\right)-30=0\)

\(\Leftrightarrow4.\left(m^2+4m+4\right)-8m+2-30=0\)

\(\Leftrightarrow4m^2+16m+16-8m-28=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow m^2+2m-3=0\)  \(\left(#\right)\)

từ \(\left(#\right)\)  ta có \(a+b+c=1+2-3=0\)

\(\Rightarrow pt\left(#\right)\)  có 2 nghiệm \(m_1=1;m_2=-3\) ( TM \(\forall m\) ) 

vậy....

20 tháng 1 2017

Ta có để pt có 2 nghiệm phân biệt thì:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)

\(\Leftrightarrow m< 2\)

Theo vi-et ta có

\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)

Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)

\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow19m+52=0\)

\(\Leftrightarrow m=\frac{52}{19}\)(loại)

Không có m thỏa cái trên

PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé

20 tháng 1 2017

Mơn bạn nhiều <3

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
11 tháng 3 2020

a ) Thay m =0 vào phương trình ta được: \(x^2-2x=0\Rightarrow x\left(x-2\right)=0\)0

                                                            \(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

                                                                  

12 tháng 3 2020

Phương trình \(x^2-2x-2m^2=0\)có các hệ số a = 1; b = -2; c = -2m2

\(\Rightarrow\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2m^2\right)=4+8m^2\)(luôn dương)

Giả sử phương trình có 2 nghiệm x1; x2 thì \(\hept{\begin{cases}x_1=\frac{2+\sqrt{4+8m^2}}{2}=1+\sqrt{1+2m^2}\\x_2=\frac{2-\sqrt{4+8m^2}}{2}=1-\sqrt{1+2m^2}\end{cases}}\)

Thay vào dữ kiện \(x_1^2=4x_2^2\), ta được:

\(\left(1+\sqrt{1+2m^2}\right)^2=4\left(1-\sqrt{1+2m^2}\right)^2\)

\(\Leftrightarrow1+1+2m^2+2\sqrt{1+2m^2}=4-8\sqrt{1+2m^2}+4+8m^2\)

\(\Leftrightarrow10\sqrt{1+2m^2}=6m^2+6\)

Bình phương hai vế:

\(100\left(1+2m^2\right)=36m^4+72m^2+36\)

\(\Leftrightarrow36m^4-128m^2-64=0\)

Đặt \(m^2=t\left(t\ge0\right)\)

Phương trình trở thành \(36t^2-128t-64=0\)

\(\Delta=128^2+4.36.64=25600,\sqrt{\Delta}=160\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{128+160}{72}=4\\t=\frac{128-160}{72}=\frac{-4}{9}\left(L\right)\end{cases}}\)

Vậy t = 4\(\Rightarrow m=\pm2\)

Vậy khi m =-2 hoặc 2 thì  phương trình có 2 nghiệm \(x_1;x_2\)khác 0 và thỏa mãn điều kiện \(x_1^2=4x_2^2\)

13 tháng 5 2019

Bạn tham khảo tại đây nhé:

Câu hỏi của KHÔNG CẦN BIẾT - Toán lớp 7 - Học toán với OnlineMath

a, thay m = 3 vào pt ta đc

x2  - ( 2 . 3 +1)x + 2.3 = 0

x2  - 7x + 6 =0

ta có a + b+c= 1 -7 + 6=0

\(\Rightarrow\)pt có 2 nghiệm pb x1 = 1 

                                       x2 = 6

b, x2 - (2m +1 )x + 2m=0

 \(\Delta\)= [ - (2m + 1 )]2  - 4.2m

        = 4m2 + 4m + 1 - 8m 

          = 4m2 - 4m + 1 

         = (2m-1)2 \(\ge\)\(\forall\)m

để pt có 2 nghiệm pb thì   2m - 1 \(\ne\)

                                          m \(\ne\)1/2

theo hệ thức vi ét ta có

x1 + x2 = 2m + 1

x1 x2 = 2m

ta có | x1| - |x2| = 2

       ( |x1| - |x2| )2 = 4

       x12  - 2 |x1x2| + x22   =4

        x12 + 2 x1x2 + x22 - 2x1x2 - 2 | x1x2| = 4

  ( x1 + x2)2  - 2 |x1x2| = 4

(2m + 1 )2 - 2|2m|=4   (1 )

+, nếu 2m \(\ge\)\(\Rightarrow\)\(\ge\)0 thì

(1)\(\Leftrightarrow\)(2m + 1)2  - 4m = 4

                   4m2 + 4m + 1 - 4m = 4

                     4m2 = 3

                        m2 = 3/4

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{3}}{2}\left(tm\right)\\m=-\frac{\sqrt{3}}{4}\left(ktm\right)\end{cases}}\)

+, 2m < 0 suy ra m < 0 thì 

(1) : (2m + 1 )2  + 4m =4

          4m2 + 4m + 1 + 4m = 4

           4m2 + 8m - 3 =0

       \(\Delta\)= 64 + 4.4.3 = 112 > 0

pt có 2 nghiệm pb x1 = \(\frac{-8+\sqrt{112}}{8}\)\(\frac{-2+\sqrt{7}}{2}\)(ko tm)

                                x2 = \(\frac{-2-\sqrt{7}}{2}\)(tm)

vậy m \(\in\){\(\frac{\sqrt{3}}{2}\)\(\frac{-2-\sqrt{7}}{2}\)} thì ...........

ko bt có đúng ko nữa 

#mã mã#

16 tháng 5 2019

a, m=2

=> \(x^2-6x+8=0\)=> \(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

b, Để phương trình có 2 nghiệm

thì \(\Delta'=\left(m+1\right)^2-m^2-4=2m-3\ge0\)=> \(m\ge\frac{3}{2}\)

Theo viet ta có

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+4\end{cases}}\)

Vì x2 là nghiệm của phương trình 

nên \(2\left(m+1\right)x_2=x^2_2+m^2+4\)

Khi đó 

\(\left(x_1^2+x^2_2\right)+m^2+4\le3m^2+16\)

=> \(\left(x_1+x_2\right)^2-2x_1x_2\le2m^2+12\)

=> \(4\left(m+1\right)^2-2\left(m^2+4\right)\le2m^2+12\)

=.>\(8m\le16\)=>\(m\le2\)

Vậy \(m\le2\)

15 tháng 4 2020

đk m ở đầu tiên là m>-9 và ra kq m=-8 nhé

15 tháng 4 2020

tìm đk để pt có 2 nghiệm không âm mới đúng nha