Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Trước tiên để pt có hai nghiệm thì:
\(\Delta'=2^2-(m+1)>0\Leftrightarrow m<3\)
Áp dụng định lý Viete cho pt bậc 2 là: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=m+1\end{matrix}\right.\)
Điều kiện: $x_1,x_2\neq 0$ \(\Leftrightarrow x_1x_2=m+1\neq 0\Leftrightarrow m\neq -1\)
Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{10}{3}\)
\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{10}{3}\Leftrightarrow \frac{x1^2+x_2^2+2x_1x_2}{x_1x_2}=\frac{16}{3}\)
\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=\frac{16}{3}\Leftrightarrow \frac{(-4)^2}{m+1}=\frac{16}{3}\)
\(\Leftrightarrow m+1=3\Leftrightarrow m=2\) (thỏa mãn)
Vậy $m=2$
Bài 2 bạn xem lại đề bài.
Trả lời
a) Delta phương trình đó rồi xét 2 trường hợp
b) phần à delta lên sẽ tìm được m rồi thế vào là xong
Chắc vậy không chắc cho nắm
a, \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\left(đpcm\right)\)
c, Theo hệ thức Vi-lét ta có: \(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)
\(\Rightarrow x^2_1+x^2_2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)
\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)
\(\Leftrightarrow13m^2-6m=0\)
\(\Leftrightarrow m\left(13m-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\)
Vậy \(\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\) thì pt có 2 nghiệm \(x_1;x_2\) thỏa mãn \(x^2_1+x^2_2=1\)
a. Pt có 2 nghiệm phân biệt =>>0 <=>b2-4ac>0 <=>(-6m+3)2-4.2.(-3m-1)>0<=>36m2-36m+9+24m+8>0 <=>36m2-12m+1+16>0
<=> (6m-1)2+16>0 với mọi m
Ta lại có 2 ngiệm âm => S=X1+X2<0 <=>-b/a<0 <=> (6m-3)/2<0 <=> 6m-3<0 <=> m<1/2
P=X1.X2>0 <=> c/a >0 <=> (-3m+1)/2>0 <=> -3m+1>0 <=> m<1/3
Vậy Pt Pt có 2 nghiệm phân biệt đều âm khi m<1/2
b