Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2
Coi như các điều kiện có nghiệm đều thỏa mãn
Theo định lý Viet \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{matrix}\right.\)
Giả sử pt bậc 2 nhận \(\frac{1}{x_1};\frac{1}{x_2}\) là nghiệm có dạng \(x^2-Ax+B=0\)
\(\left\{{}\begin{matrix}\frac{1}{x_1}+\frac{1}{x_2}=A\\\frac{1}{x_1x_2}=B\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\frac{x_1+x_2}{x_1x_2}=\frac{-\frac{b}{a}}{\frac{c}{a}}=-\frac{b}{c}\\B=\frac{1}{x_1x_2}=\frac{a}{c}\end{matrix}\right.\)
Vậy pt đó có dạng: \(x^2+\frac{b}{c}x+\frac{a}{c}=0\Leftrightarrow cx^2+bx+a=0\)
Câu 1:
a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+49-2x-1=0\\x< =7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-16x+48=0\\x< =7\end{matrix}\right.\Leftrightarrow x=4\)
Câu 2:
\(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot4=4m^2-16\)
Để phương trình có hai nghiệm thì (m-2)(m+2)>=0
=>m>=2 hoặc m<=-2
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow x_1^2+x_2^2+2x_1+2x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow4m^2+4m-8=0\)
=>(m+2)(m-1)=0
=>m=-2(nhận) hoặc m=1(loại)
1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: m-2<0
=>m<2
2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)
\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)
\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)
\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)
\(\Leftrightarrow2m^2-6m+9-9m+18=0\)
=>2m^2-15m+27=0
hay \(m\in\varnothing\)
3: =>m=0
a: =>x^2-8x+3-5+4m=0
=>x^2-8x+4m-2=0
\(\text{Δ}=\left(-8\right)^2-4\left(4m-2\right)\)
\(=64-16m+8=-16m+72\)
Để pt có hai nghiệm thì -16m+72>=0
=>-16m>=-72
=>m<=9/2
Theo đề, ta có:x1+x2<10
=>8/1<10
=>8<10(luôn đúng)
b: \(\text{Δ}=\left(-3\right)^2-4\left(-m+1\right)=9+4m-4=4m+5\)
Để phương trình có hai nghiệm thì 4m+5>=0
=>m>=-5/4
1/x1+1/x2=-4
=>\(\dfrac{x_2+x_1}{x_1x_2}=-4\)
=>\(\dfrac{3}{-m+1}=-4\)
=>-m+1=-3/4
=>m-1=3/4
=>m=7/4
Bài 2:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=2\\-\dfrac{b^2-4ac}{4a}=1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\\left(-2a\right)^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4a^2-4ac=-4a\\a+b+c=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-c=-1\\a+b+c=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+1\\a-2a+a+1=-1\end{matrix}\right.\)
=>1=-1(loại)