K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

a, Thay m=3 vào pt ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)

b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

 

27 tháng 4 2019

Làm câu b)

Để phương trình có hai nghiệm phân biệt:

\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)

Áp dụng định lí Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)

Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)

Từ 1, 2 ta có:

\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)

Vậy ...

NV
5 tháng 4 2021

\(ac=-10< 0\Rightarrow\) phương trình luôn có 2 nghiệm pb trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-10\end{matrix}\right.\)

Kết hợp hệ thức Viet và đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1-x_2=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-m+8}{2}\\x_2=\dfrac{-m-8}{2}\end{matrix}\right.\)

Thế vào \(x_1x_2=-10\)

\(\Rightarrow\left(\dfrac{-m+8}{2}\right)\left(\dfrac{-m-8}{2}\right)=-10\)

\(\Leftrightarrow m^2-64=-40\Rightarrow m^2=24\)

\(\Rightarrow m=\pm2\sqrt{6}\)

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

2 tháng 5 2022

a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)

pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\) 

Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)

b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)

Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).

Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)

Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)

Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)

a) Thay m=0 vào phương trình (1), ta được:

\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy: Khi m=0 thì S={0;-2}

5 tháng 5 2021

câu b á

 

Δ=(m-1)^2-4(m^2-m)

=m^2-2m+1-4m^2+4m

=-3m^2+2m+1

Để phương trình có hai nghiệm thì -3m^2+2m+1>=0

=>-1/3<=m<=1

(1+x1)^2+(1+x2)^2=6

=>x1^2+x2^2+2(x1+x2)+2=6

=>(x1+x2)^2-2x1x2+2(m-1)+2=6

=>(m-1)^2-2(m^2-m)+2m=6

=>m^2-2m+1-2m^2+2m+2m=6

=>-m^2+2m-5=0

=>Loại

2 tháng 8 2017

Phương trình x 2 – 2(m + 4)x + m 2 – 8 = 0 có a = 1  0 và

∆ ' = ( m + 4 ) 2 – ( m 2 – 8 ) = 8 m + 24

Phương trình có hai  x 1 ;   x 2 ⇔ ∆ ' ≥ 0 ⇔ 8 m + 24 ≥ 0

Áp dụng định lý Vi – ét ta có x 1 + x 2   = 2 ( m + 4 ) ;   x 1 . x 2 = m 2   –   8

Ta có:

A = x 1 + x 2 − 3 x 1 x 2

= 2 (m + 4) – 3 ( m 2 – 8) = 3 m 2 + 2m + 32 =  − 3 m 2 − 2 3 m − 32 3

= − 3 m − 1 3 2 + 97 3

Nhận thấy A ≤ 97 3  và dấu “=” xảy ra khi m − 1 3 = 0 ⇔ m = 1 3  (TM)

Vậy giá trị lớn nhất của A là 97 3 khi  m = 1 3

Đáp án: A

16 tháng 1 2022

a, Thay m=-1 vào pt ta có:
\(x^2-2\left(m-1\right)x+m^2-3=0\)

\(\Leftrightarrow x^2-2\left(-1-1\right)x+\left(-1\right)^2-3=0\\ \Leftrightarrow x^2+4x-2=0\\ \Leftrightarrow\left(x^2+4x+4\right)-6=0\\ \Leftrightarrow\left(x+2\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+2-\sqrt{6}\right)\left(x+2+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt{6}\\x=-2-\sqrt{6}\end{matrix}\right.\)