K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

\(\Delta'=\left(-m\right)^2-2m^2+1\)

=\(m^2-2m^2+1\)

=\(-m^2+1\) \(\Rightarrow-m^2+1>0\Leftrightarrow m< 1\)

theo vi-et ta có \(x_1+x_2=-2m\)

\(x_1.x_2=2m^2-1\)

theo đề bài ta có \(\left(x_1\right)^3+\left(x_2\right)^3-\left(x_1\right)^2-\left(x_2\right)^2=-2\)

\(\Leftrightarrow\)\(\left(x_1+x_2\right).\left(x_1^2-x_1.x_2+x_2^2\right)\) = 4

\(\Leftrightarrow\left(x_1+x_2\right).[\left(x_1+x_2\right)^2-3x_1.x_2]\) =4

\(\Leftrightarrow-2m.[\left(-2m\right)^2-3.\left(2m^2-1\right)]\)=4

\(\Leftrightarrow-2m.\left(4m^2-6m^2+3\right)\)=4

\(\Leftrightarrow-2m.\left(-2m^2-3\right)\) =4

\(\Leftrightarrow4m^2+6m\) =4

\(\Leftrightarrow4m^2+6m-4=0\)

\(\Delta=6^2-4.4.\left(-4\right)=36+64=100>0\) =>\(\sqrt{\Delta}=\sqrt{100}=50\)

phương trình có 2 ngiệm \(x_1=\frac{11}{2}\),\(x_2=-7\)

với \(x_2=-7\) thỏa mãn đk

26 tháng 4 2019

bài này thì mk ko chắc đúng ko từ \(-2m.\left(-2m^2-3\right)\) trở lên là đúng

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

24 tháng 5 2022

hình như đề thiếu hả bạn

6 tháng 6 2022

thiếu đâu đủ mà

17 tháng 6 2022

ko biết làm

30 tháng 4 2022

Bạn ơi, bạn xem lại đề có được không ạ? Là \(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2-2\right)=50\) hay sao ạ?

30 tháng 4 2022

Hay là \(\left(x_1^2-2mx_2+3\right)\left(x_2^2-2mx_1-2\right)=50\) bạn nhỉ?

16 tháng 1 2022

a, Với m = -2 pt có dạng 

\(x^2+4x-5=0\)

ta có : a + b + c = 1 + 4 - 5 = 0 

nên pt có 2 nghiệm \(x=1;x=-5\)

b, delta' = m^2 - ( m^2 - 9 ) = 9 > 0 

Vậy pt luôn có 2 nghiệm pb 

Theo Vi et : x1 + x2 = 2m ; x1x2 = m^2 - 9

Ta có : x1^2 + x2^2(x1+x2) = 12

<=> x1^2 + 2x2^2m = 12 

đề có thiếu dấu ko bạn ? 

a: Thay m=-2 vào pt, ta được:

\(x^2-2\cdot\left(-2\right)\cdot x+\left(-2\right)^2-9=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-1\right)=0\)

=>x=-5 hoặc x=1

AH
Akai Haruma
Giáo viên
21 tháng 5 2022

Lời giải:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=1-(m+2)\geq 0\Leftrightarrow m\leq -1$

Áp dụng định lý Viet:

$x_1+x_2=2$

$x_1x_2=m+2$
Khi đó:
\(\text{VT}=\sqrt{[(x_1-2)^2+mx_2][(x_2-2)^2+mx_1]}=\sqrt{[(x_1-x_1-x_2)^2+mx_2][(x_2-x_1-x_2)^2+mx_1]}\)

\(=\sqrt{(x_2^2+mx_2)(x_1^2+mx_1)}=\sqrt{x_1x_2(x_2+m)(x_1+m)}\)

\(=\sqrt{x_1x_2[x_1x_2+m(x_1+x_2)+m^2]}\)

\(=\sqrt{(m+2)[m+2+2m+m^2]}=\sqrt{(m+2)(m^2+3m+2)}\)

\(=\sqrt{(m+2)^2(m+1)}\)

Lại có:

\(\text{VP}=|x_1-x_2|\sqrt{x_1x_2}=\sqrt{(x_1-x_2)^2x_1x_2}=\sqrt{[(x_1+x_2)^2-4x_1x_2]x_1x_2}\)

\(=\sqrt{-4(m+1)(m+2)}\)

YCĐB thỏa mãn khi:

$\sqrt{(m+1)(m+2)^2}=\sqrt{-4(m+1)(m+2)}$

$\Leftrightarrow (m+1)(m+2)^2=-4(m+1)(m+2)$

$\Leftrightarrow m=-1; m=-2$ hoặc $m=-6$ (đều tm)

 

21 tháng 5 2022

Chắc chắn đúng không ạ?

 

a: Thay m=3 vào pt, ta được:

\(x^2-4x-1=0\)

\(\Leftrightarrow\left(x-2\right)^2=5\)

hay \(\left[{}\begin{matrix}x=\sqrt{5}+2\\x=-\sqrt{5}+2\end{matrix}\right.\)

b: \(\text{Δ}=\left(-4\right)^2-4\left(-2m+5\right)\)

\(=16+8m-20=8m-4\)

Để phương trình có hai nghiệm thì 8m-4>=0

hay m>=1/2

Theo đề, ta có: \(\left(x_1+x_2\right)^2+3x_1x_2-3\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4^2-3\cdot4+3\left(-2m+5\right)=0\)

\(\Leftrightarrow4-6m+15=0\)

=>-6m+19=0

hay m=19/6(nhận)

15 tháng 2 2022

T gửi nhầm bài xl

a) Thay m=-2 vào phương trình, ta được:

\(x^2-\left(-x\right)-2=0\)

\(\Leftrightarrow x^2+x-2=0\)

a=1; b=1; c=-2

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)

17 tháng 7 2021

a, với =-3

\(=>x^2-6x+6=0\)

\(\Delta=\left(-6\right)^2-4.6=12>0\)

=>pt có 2 nghiệm phân biệt x3,x4

\(=>\left[{}\begin{matrix}x3=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x4=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)

b, \(\Delta=\left(2m\right)^2-4\left(m^2+m\right)=4m^2-4m^2-4m=-4m\)

pt đã cho đề bài có 2 nghiệm phân biệt x1,x2 khi

\(-4m>0< =>m< 0\)

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=-2m\\x1x2=m^2+m\end{matrix}\right.\)

có \(\left(x1-x2\right)\left(x1^2-x2^2\right)=32\)

\(< =>\left(x1-x2\right)^2\left(x1+x2\right)=32\)

\(< =>\left[x1^2-2x1x2+x2^2\right]\left(-2m\right)=32\)

\(< =>\left[\left(x1+x2\right)^2-4x1x2\right]\left(-2m\right)=32\)

\(< =>\left[\left(-2m\right)^2-4\left(m^2+m\right)\right]\left(-2m\right)=32< =>m=2\)(loại)

Vậy \(m\in\varnothing\)

 

 

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:
a. Với $m=-3$ thì pt trở thành:

$x^2-6x+6=0\Leftrightarrow x=3\pm \sqrt{3}$

b. Để pt có 2 nghiệm thì: $\Delta'=m^2-(m^2+m)=-m\geq 0$

$\Leftrightarrow m\leq 0$

Áp dụng định lý Viet: $x_1+x_2=-2m; x_1x_2=m^2+m$

Khi đó:
$(x_1-x_2)(x_1^2-x_2^2)=32$

$\Leftrightarrow (x_1-x_2)^2(x_1+x_2)=32$

$\Leftrightarrow [(x_1+x_2)^2-4x_1x_2](x_1+x_2)=32$

$\Leftrightarrow [(-2m)^2-4(m^2+m)](-2m)=32$

$\Leftrightarrow 8m^2=32$

$\Leftrightarrow m^2=4$

$\Rightarrow m=-2$ (do $m\leq 0$)

Vây.........