\(x^2-2\left(m-1\right)x+m-3=0\) 
cmr phương trình có nghiệm với mọ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

\(x^2-2\left(m-1\right)x+m-3=0\)

\(\Delta'=b'^2-ac=\left[-\left(m-1\right)^2\right]-1.\left(m-3\right)=m^2-2m+1-m+3=m^2-3m+4\)

\(=m^2-2.m.\frac{3}{2}+\frac{9}{4}+\frac{7}{4}=\left(m-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(\left(m-\frac{3}{2}\right)^2\ge0\forall m\)

\(\Rightarrow\left(m-\frac{3}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall m\)

\(\Rightarrow\Delta'>0\forall m\)

Vậy...

7 tháng 4 2018

bạn làm được bài này chưa cho mình xin lời giải

17 tháng 5 2016

Câu này là hàm số lớp 9 đây :) Sẽ áp dụng Viet :) Cô hướng dẫn thôi nhé ^^

a. Ta tính được

 \(\Delta=\left(4m-1\right)^2-4.\left[2\left(m-4\right)\right]=16m^2-16m+33=\left(4m+2\right)^2+29\ge29>0\)

b. Biến đổi \(\left|x_1-x_2\right|=17\Leftrightarrow\left(x_1-x_2\right)^2=289\Leftrightarrow x_1^2+x_2^2-2x_1x_2=289\)

\(=\left(x_1+x_2\right)^2-4x_1x_2=289\)

Theo định lý Viet ta có: \(\hept{\begin{cases}x_1+x_2=1-4m\\x_1x_2=2\left(m-4\right)\end{cases}}\)

Từ đó; \(\left(1-4m\right)^2-4.2.\left(m-4\right)=289\Leftrightarrow16m^2-16m+33=289\Leftrightarrow16m^2-16m-256=0\)

Sau đó em sẽ tìm đc m :)))

a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)

Vậy PT luôn có 2 nghiệm phân biệt.

b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi

\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)

Nhiều thế, chắc phải đưa ra đáp thôi

30 tháng 5 2021

ko biết làm

30 tháng 5 2021

Toi lạy bạn luôn r

17 tháng 6 2018

Đề sai bạn ơi, bạn sửa lại giúp mình mình giải cho ^_^

Vì nếu m = 5 chẳng hạn, x^2 + 12 + 10 = 0 vô nghiệm

Chắc ý bạn là x^2 + 2x(m+1) +2m = 0 ?

17 tháng 6 2018

bn ơi đề thi chính thức của chỗ mk  đấy ko sai đâu