Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\left(2m+1\right)x+m^2+2=0\)
\(\Delta=\left[-\left(2m+1\right)\right]^2-4m^2-8=4m^2+4m+1-4m^2-8=4m-7\)
Để phương trình có 2 nghiệm x1, x2 thì: \(\Delta\ge0\Leftrightarrow4m-7\ge0\Leftrightarrow m\ge\frac{7}{4}\).
Theo vi ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+1\\x_1.x_2=m^2+2\end{cases}}\)
Kết hợp với đề bài ta có hệ: \(\hept{\begin{cases}x_1+x_2=2m+1\left(1\right)\\x_1.x_2=m^2+2\left(2\right)\\x_1+2x_2=4\left(3\right)\end{cases}}\)
Giải (1) và (3) ta được: \(\hept{\begin{cases}x_1=4m-2\\x_2=3-2m\end{cases}}\)Thay vào (2) ta được:
\(m^2+2=\left(4m-2\right)\left(3-2m\right)=16m-8m^2-6\)
\(\Leftrightarrow9m^2-16m+8=0\left(4\right)\)
Mà \(9m^2-16m+8=\left(3m-\frac{8}{3}\right)^2+\frac{8}{9}\ge\frac{8}{9}\forall m\)
\(\Rightarrow\)Phương trình (4) vô nghiệm.
Không có m thỏa mãn.
Chỗ kết hợp với đề bài mình đánh thiếu \(\hept{\begin{cases}x_1+x_2=2m+1\left(1\right)\\x_1.x_2=m^2+2\left(2\right)\\x_1+2x_2=4\left(3\right)\end{cases}}\)
Em mới lớp 7 nên không chắc ạ.
\(2x^2-4x+\left(m-1\right)=0\)
Từ gt suy ra \(x_1+x_2=-x_2\)
Mặt khác,theo hệ thức viet thì \(x_1+x_2=\frac{4}{2}=2\)
Suy ra \(-x_2=2\Rightarrow x_2=-2\).Thay x = -2 vào pt ban đầu:
\(2.\left(-2\right)^2-4.\left(-2\right)+\left(m-1\right)=0\)
Tức là \(m-1=-16\Leftrightarrow m=-15\)
Bạn giải đúng rồi nhé, nhưng cách giải hơi rắc rối thôi.
theo Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+3}{2}\\x_1.x_2=\dfrac{m+1}{4}\end{matrix}\right.\)
để \(\dfrac{x_1+x_2}{x_1.x_2}< 4\)
<=>\(\dfrac{\dfrac{2m+3}{2}}{\dfrac{m+1}{4}}< 4\)<=>\(\dfrac{2\left(2m+3\right)}{m+1}< 4\)
<=>4m+6<4m+4<=>6<4
không có giá trị m nào để \(\dfrac{x_1+x_2}{x_1.x_2}< 4\)
Theo mình thì bài của bạn thiếu điều kiện để $m$ để PT có 2 nghiệm phân biệt (\(\Delta>0\) )
Sau khi thu được điều kiện cần của $m$ thì đoạn tiếp sau đó của bạn không có vấn đề, có chăng bạn biến đổi hơi phức tạp.
a) Đặt \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m-4\right)=m^2+m+5=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\forall m\)
=>pt luôn có 2 nghiệm phân biệt với mọi m
b) Gọi x1;x2 là 2 nghiệm phân biệt của pt. Theo hệ thức Vi-ét: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m-4\end{cases}}\)
c) \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\Leftrightarrow\left(2m+2\right)^2-2\left(m-4\right)=10\)
\(\Leftrightarrow4m^2+8m+4-2m+8=10\Leftrightarrow4m^2+6m+2=0\Leftrightarrow2m^2+3m+1=0\)
\(\Leftrightarrow2m^2+2m+m+1=0\Leftrightarrow2m\left(m+1\right)+\left(m+1\right)=0\Leftrightarrow\left(m+1\right)\left(2m+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\2m+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-\frac{1}{2}\end{cases}}\)
\(\Delta=\left(-2m\right)^2-4.\left(2m^2-1\right)\)
\(=4m^2-8m^2+4\)
\(=4-4m^2\ge0\forall m\)
Theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-1\end{matrix}\right.\)
Ta có:
\(x^3_1-x^2_1+x^3_2-x^2_2=2\)
\(\Leftrightarrow x^3_1+x^3_2-\left(x^2_1+x^2_2\right)-2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x^2_2\right)-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\right]-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2=0\)
\(\Leftrightarrow2m\left[\left(2m\right)^2-3\left(2m^2-1\right)\right]-\left[\left(2m^2\right)-2\left(2m^2-1\right)\right]-2=0\)
\(\Leftrightarrow2m\left(4m^2-6m^2+1\right)-4m^2+4m^2-2-2=0\)
\(\Leftrightarrow2m\left(-2m^2+1\right)-4=0\)
\(\Leftrightarrow-4m^3+2m-4=0\)
\(\Leftrightarrow4m^3-2m+4=0\)
\(\Leftrightarrow2\left(2m^2-m\right)=-4\)
\(\Leftrightarrow2m^2-m=-2\)
\(\Leftrightarrow2m^2-m+2=0\)
\(\Delta=\left(-1\right)^2-4.2.2=-15< 0\Rightarrow\) Vô no.
??
Sửa lại từ dòng 12 xuống 13 đi bạn
\(-3\left(2m^2-1\right)=-6m^2+3\) not \(+1\)