K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m+3}{2}&x_1.x_2=\frac{m}{2}&\end{cases}}\)

ĐĂT \(A=!x_1-x_2!\)

\(\Rightarrow A^2=\left(!x_1-x_2!\right)=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow A^2=\frac{\left(m+3\right)^2}{2^2}-\frac{4m}{2}\)

\(\Leftrightarrow4A^2=m^2-8m+16-16-9\)

\(\Leftrightarrow4A^2=\left(m-4\right)^2-25\ge25\)

\(Min4A^2=25\Rightarrow MinA=\frac{1}{2}\Leftrightarrow\left(m-4\right)^2=0\Leftrightarrow m=4\) gía trị cần tìm

Vậy m=4 là giá trị cần tìm

\(\Leftrightarrow4A^2=m^2-2m+9\)

\(\Leftrightarrow4A^2=\left(m-1\right)+8\ge8\)

\(Min4A^2=8\Rightarrow MinA=\sqrt{2}\)

\(Khi\left(m-1\right)^2=0\Leftrightarrow m=1\)

Vậy \(m=1\)là giá trị cần tìm

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

19 tháng 5 2015
theo de bai a=8 hay x,^2+x,,^2-6x,x,, =8 <=>(x,+x,,)^2-8x,x,,=8 (*) theo vi-et : S= m;P=m-1 thay vao pt (*) dc m^2-8m+8=8 <=>m^2-8m=0 <=>m(m-8)=0 <=>m=0 hoacm=8 dung k...x, la x1;x,,la x2 theo
5 tháng 7 2020

Mình

không

bít

làm!

5 tháng 7 2020

Mình

không

bít 

làm!                                                     

23 tháng 1 2020

1+1=?

2+2=?