Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=-5 thì pt sẽ là x^2-5x-6=0
=>x=6 hoặc x=-1
b:
Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29
Để pt có hai nghiệm thì -4m+29>=0
=>m<=29/4
x1-x2=3
=>(x1-x2)^2=9
=>(x1+x2)^2-4x1x2=9
=>5^2-4(m-1)=9
=>4(m-1)=25-9=16
=>m-1=4
=>m=5(nhận)
c: 2x1-3x2=5 và x1+x2=5
=>x1=4 và x2=1
x1*x2=m-1
=>m-1=4
=>m=5(nhận)
3:
\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)
=4m^2-4m+1+8m+44
=4m^2+4m+45
=(2m+1)^2+44>=44>0
=>Phương trình luôn có hai nghiệm pb
|x1-x2|<=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)
=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)
=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)
=>0<=4m^2+4m+45<=16
=>4m^2+4m+29<=0
=>(2m+1)^2+28<=0(vô lý)
Theo định lí vi-et ta có:
\(x_1+x_2=5\)
\(x_1.x_2=m\)
ĐK: 25 > hoặc = 4m
*|x1-x2|=3
Với x1>x2 =>x1-x2=3
=>*x1=3+x2
=>3+x2+x2=5
tự tìm x2
*x2=x1-3
thế vô tìm x1
rồi thế x1 ; x2 vô x1.x2=m xong
tượng tự với TH x1<x2
Theo hệ thức Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{3}\left(1\right)\\x_1x_2=\dfrac{m}{3}\left(2\right)\end{matrix}\right.\)
Ta có \(6x_1+x_2=0\)\(\Rightarrow5x_1+\left(x_1+x_2\right)=0\Rightarrow5x_1+\dfrac{5}{3}=0\Leftrightarrow x_1=-\dfrac{1}{3}\) Thay vào (1) ta được:
\(x_2-\dfrac{1}{3}=\dfrac{5}{3}\Rightarrow x_2=2\)
Thay \(x_1=-\dfrac{1}{3};x_2=2\) vào (2) ta được:
\(-\dfrac{2}{3}=\dfrac{m}{3}\Rightarrow m=-2\)
Giải thích các bước giải:
a.Với m=6→x2−5x+6=0→(x−2)(x−3)=0→x∈{2,3}m=6→x2−5x+6=0→(x−2)(x−3)=0→x∈{2,3}
b.Để phương trình có 2 nghiệm x1,x2x1,x2
→Δ=52−4m≥0→m≤254→Δ=52−4m≥0→m≤254
→{x1+x2=5x1x2=m→{x1+x2=5x1x2=m
Mà |x1−x2|=3→(x1−x2)2=9|x1−x2|=3→(x1−x2)2=9
→(x1+x2)2−4x1x2=9→(x1+x2)2−4x1x2=9
→52−4m=9→52−4m=9
→m=−4
a, khi m=6 thì pt\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b,Ta có:\(\Delta=\left(-5\right)^2-4.1.m=25-4m\)
để pt có 2 nghiệm x1, x2 phân biệt thì \(\Delta>0\) hay \(25-4m>0\Rightarrow m< \dfrac{25}{4}\)
\(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
\(\left|x_1-x_2\right|=3\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
\(\Leftrightarrow25-4m=9\Rightarrow m=4\) (thỏa mãn)
â) thay m = 6 và phương trình ta đc
\(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-2\right).\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b.
Phương trình có 2 nghiệm khi: \(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
Pt có 2 nghiệm dương khi \(m>0\)
\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)
\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+2x_1x_2\sqrt{x_1x_2}=36\)
\(\Leftrightarrow5m+2m\sqrt{m}=36\)
Đặt \(\sqrt{m}=t>0\Rightarrow2t^3+5t^2-36=0\)
\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)
\(\Leftrightarrow t=2\Rightarrow\sqrt{m}=2\)
\(\Rightarrow m=4\)
\(\text{Δ}=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)
Để phương trình có hai nghiệm phân biệt thì -4m+13>0
hay m<13/4
Áp dụng Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=2\\x_2=1\end{matrix}\right.\)
Theo đề, ta có: m-1=2
hay m=3(nhận)
pt có 2 nghiệm x1, x2\(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow25-12\left(m-2\right)\ge0\Leftrightarrow25-12m+24\ge0\Leftrightarrow49-12m\ge0\)
\(\Leftrightarrow m\le\frac{12}{49}\)