K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

??????????????????????????????

NV
7 tháng 4 2022

a.

\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=2m-4\end{matrix}\right.\)

c.

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow m^2-2\left(2m-4\right)=4\)

\(\Leftrightarrow m^2-4m+4=0\Rightarrow m=2\)

7 tháng 4 2022

a.\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0\)

=> pt luôn có nghiệm với mọi m

b.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=2m-4\end{matrix}\right.\)

c.\(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=4\)

\(\Leftrightarrow\left(-m\right)^2-2\left(2m-4\right)=4\)

\(\Leftrightarrow m^2-4m+8-4=0\)

\(\Leftrightarrow m^2-4m+4=0\)

\(\Leftrightarrow\left(m-2\right)^2=0\)

\(\Leftrightarrow m=2\)

14 tháng 4 2020

pt có 2 nghiệm x1, x2\(\Leftrightarrow\Delta\ge0\)

                           \(\Leftrightarrow25-12\left(m-2\right)\ge0\Leftrightarrow25-12m+24\ge0\Leftrightarrow49-12m\ge0\)

                           \(\Leftrightarrow m\le\frac{12}{49}\)

10 tháng 1 2019

Phương trình (2m - 1) x 2  - 2(m + 4)x + 5m + 2 = 0 ( m   1 2 )

7 tháng 3 2021

Theo hệ thức Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{3}\left(1\right)\\x_1x_2=\dfrac{m}{3}\left(2\right)\end{matrix}\right.\) 

Ta có  \(6x_1+x_2=0\)\(\Rightarrow5x_1+\left(x_1+x_2\right)=0\Rightarrow5x_1+\dfrac{5}{3}=0\Leftrightarrow x_1=-\dfrac{1}{3}\) Thay vào (1) ta được:

\(x_2-\dfrac{1}{3}=\dfrac{5}{3}\Rightarrow x_2=2\)

Thay \(x_1=-\dfrac{1}{3};x_2=2\) vào (2) ta được:

\(-\dfrac{2}{3}=\dfrac{m}{3}\Rightarrow m=-2\)

a: Khi m=-5 thì pt sẽ là x^2-5x-6=0

=>x=6 hoặc x=-1

b:

Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29

Để pt có hai nghiệm thì -4m+29>=0

=>m<=29/4

x1-x2=3

=>(x1-x2)^2=9

=>(x1+x2)^2-4x1x2=9

=>5^2-4(m-1)=9

=>4(m-1)=25-9=16

=>m-1=4

=>m=5(nhận)

c: 2x1-3x2=5 và x1+x2=5

=>x1=4 và x2=1

x1*x2=m-1

=>m-1=4

=>m=5(nhận)

1 tháng 5 2017

Theo đề bài thì ta có:

\(\hept{\begin{cases}3x_1^2+5x_1+4-m=0\\x_2^2-5x_2+4+m=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}9x_1^2+15x_1+12-3m=0\left(1\right)\\x_2^2-5x_2+4+m=0\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta được

\(\left(9x_1^2-x_2^2\right)+\left(15x_1+5x_2\right)+8-4m=0\)

\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1-x_2+5\right)+8-4m=0\)

\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1+x_2-2x_2+5\right)+8-4m=0\)

\(\Leftrightarrow\left(6-2x_2\right)+8-4m=0\)

\(\Leftrightarrow x_2=7-2m\)

Thế lại vô (2) ta được

\(\left(7-2m\right)^2-5\left(7-2m\right)+4+m=0\)

\(\Leftrightarrow4m^2-17m+18=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{9}{4}\end{cases}}\)

1 tháng 5 2017

Oh thanks you very muck!!!!