K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

Đáp án B

G ( 7 3 ; 10 3 ) =>  G ' ( 3 ; 11 3 )

A’ (3; 1); B’(3; 3); C’ (3; 7)  =>3 điểm này thẳng hàng

Do đó không tồn tại G’. G’ chỉ là ảnh của G chứ không phải trọng tâm tam giác A’B’C’

2 tháng 10 2019

Đáp án D

A ' ( 1 ; − 2 ) B ' ( − 1 ; 4 ) C ' ( 2 ; − 5 ) => 3 điểm A;B;C cùng nằm trên đường thẳng y = – 3x + 1 

=> không tồn tại trọng tâm G’

6 tháng 9 2018

Đáp án D

A ’ 3 ; 1 B ’ 3 ; 3 C ’ 3 ; 7 =>3 điểm A’, B’, C’ thẳng hàng=>không tồn tại G’

13 tháng 12 2019

Đáp án A

A’(5;12) ; B’(8;19); C’(5;17)

A ' B ' → ≠ k B ' C ' → =>3 điểm không thẳng hàng

=> trọng tâm G’(6;16)

21 tháng 10 2018

Đáp án D

  T u → M = M ' => 3x’ + ( y’ – 3) – 2 = 0   3x’ + y’ – 5 = 0

 Phương trìnhđường thẳng cần tìm: 3x + y – 5 = 0

14 tháng 3 2019

Đáp án B

10 tháng 10 2017

Đáp án C

NV
4 tháng 4 2021

1a.

\(y'=3x^2.f'\left(x^3\right)-2x.g'\left(x^2\right)\)

b.

\(y'=\dfrac{3f^2\left(x\right).f'\left(x\right)+3g^2\left(x\right).g'\left(x\right)}{2\sqrt{f^3\left(x\right)+g^3\left(x\right)}}\)

2.

\(f'\left(x\right)=\left(m-1\right)x^3+\left(m-2\right)x^2-2mx+3=0\)

Để ý rằng tổng hệ số của vế trái bằng 1 nên pt luôn có nghiệm \(x=1\), sử dụng lược đồ Hooc-ne ta phân tích được:

\(\Leftrightarrow\left(x-1\right)\left[\left(m-1\right)x^2+\left(2m-3\right)x-3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(m-1\right)x^2+\left(2m-3\right)x-3=0\left(1\right)\end{matrix}\right.\)

Xét (1), với \(m=1\Rightarrow x=-3\)

- Với \(m\ne1\Rightarrow\Delta=\left(2m-3\right)^2+12\left(m-1\right)=4m^2-3\)

Nếu \(\left|m\right|< \dfrac{\sqrt{3}}{2}\Rightarrow\) (1) vô nghiệm \(\Rightarrow f'\left(x\right)=0\) có đúng 1 nghiệm

Nếu \(\left|m\right|>\dfrac{\sqrt{3}}{2}\Rightarrow\left(1\right)\) có 2 nghiệm \(\Rightarrow f'\left(x\right)=0\) có 3 nghiệm

Câu 1 : Cho hình chóp S.ABCD có đáy ABC là tam giác vuông tại B và \(SA\perp\left(ABC\right)\) , \(AB=a\sqrt{3}\) , AC = 2a . Tính khoảng cách từ điểm C đến mặt phẳng (SAB) ? A. a B. 2a C. \(a\sqrt{5}\) D. \(a\sqrt{7}\) Câu 2 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy và SA = 2a . Gọi M là trung điểm SD . Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM) A. \(d=\frac{a}{3}\) B. \(d=\frac{2a}{3}\) C....
Đọc tiếp

Câu 1 : Cho hình chóp S.ABCD có đáy ABC là tam giác vuông tại B và \(SA\perp\left(ABC\right)\) , \(AB=a\sqrt{3}\) , AC = 2a . Tính khoảng cách từ điểm C đến mặt phẳng (SAB) ?

A. a B. 2a C. \(a\sqrt{5}\) D. \(a\sqrt{7}\)

Câu 2 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy và SA = 2a . Gọi M là trung điểm SD . Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM)

A. \(d=\frac{a}{3}\) B. \(d=\frac{2a}{3}\) C. \(d=\frac{3a}{2}\) D. d = a

Câu 3 : Cho hình chóp S.ABC có đáy là tam giác vuông tại C , AC = a , BC = \(a\sqrt{2}\) , SA vuông góc với mặt đáy và SA = a . Góc giữa SB và mặt phẳng đáy bằng

A. 900 B. 450 C. 300 D. 600

Câu 4 : Cho hàm số \(f\left(x\right)=\sqrt{x^2+3}\) . Tính giá trị của biểu thức \(S=f\left(1\right)^{ }\) + 4 f' (1)

A. S = 4 B. S = 2 C. S = 6 D. S = 8

Câu 5 : Hàm số nào trong các hàm số sau liên tục trên tập xác định R

A. \(y=\sqrt{x^2-1}\) B. \(y=\frac{1}{x}\) C. \(y=\frac{3}{x^2+2}\) D. \(y=tanx\)

Câu 6 : Gọi k1 , k2 , k3 lần lượt là hệ số góc của tiếp tuyến của đồ thị các hàm số

\(y=f\left(x\right),y=g\left(x\right),y=\frac{f\left(x\right)}{g\left(x\right)}\) tại x = 2 và thỏa mãn \(k_1=k_2=2k_3\ne0\)

A. \(f\left(2\right)< \frac{1}{2}\) B. \(f\left(2\right)\le\frac{1}{2}\) C. \(f\left(2\right)>\frac{1}{2}\) D. \(f\left(2\right)\ge\frac{1}{2}\)

giải chi tiết từng câu giúp mình với ạ

2
NV
3 tháng 7 2020

3.

\(SA\perp\left(ABC\right)\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)

\(AB=\sqrt{AC^2+BC^2}=a\sqrt{3}\)

\(tan\widehat{SBA}=\frac{SA}{AB}=\frac{1}{\sqrt{3}}\Rightarrow\widehat{SBA}=30^0\)

4.

\(f'\left(x\right)=\frac{\left(x^2+3\right)'}{2\sqrt{x^2+3}}=\frac{x}{\sqrt{x^2+3}}\) \(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=2\\f'\left(1\right)=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow S=2+4.\frac{1}{2}=4\)

5.

Hàm \(y=\frac{3}{x^2+2}\) xác định và liên tục trên R

6.

\(\left\{{}\begin{matrix}k_1=f'\left(2\right)\\k_2=g'\left(2\right)\\k_3=\frac{f'\left(2\right).g\left(2\right)-g'\left(2\right).f\left(2\right)}{g^2\left(2\right)}\end{matrix}\right.\) \(\Rightarrow k_3=\frac{k_1.g\left(2\right)-k_2.f\left(2\right)}{g^2\left(2\right)}\Rightarrow\frac{1}{2}=\frac{g\left(2\right)-f\left(2\right)}{g^2\left(2\right)}\)

\(\Leftrightarrow g^2\left(2\right)=2g\left(2\right)-2f\left(2\right)\)

\(\Leftrightarrow1-2f\left(2\right)=\left[g\left(2\right)-1\right]^2\ge0\)

\(\Rightarrow2f\left(2\right)\le1\Rightarrow f\left(2\right)\le\frac{1}{2}\)

NV
3 tháng 7 2020

1.

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow d\left(C;\left(SAB\right)\right)=BC\)

\(BC=\sqrt{AC^2-AB^2}=a\)

2.

Qua S kẻ đường thẳng d song song AD

Kéo dài AM cắt d tại E \(\Rightarrow SADE\) là hình chữ nhật

\(\Rightarrow DE//SA\Rightarrow ED\perp\left(ABCD\right)\)

\(SBCE\) cũng là hcn \(\Rightarrow SB//CE\Rightarrow SB//\left(ACM\right)\Rightarrow d\left(SB;\left(ACM\right)\right)=d\left(B;\left(ACM\right)\right)\)

Gọi O là tâm đáy, BD cắt (ACM) tại O, mà \(BO=DO\)

\(\Rightarrow d\left(B;\left(ACM\right)\right)=d\left(D;\left(ACM\right)\right)\)

\(\left\{{}\begin{matrix}AC\perp BD\\AC\perp ED\end{matrix}\right.\) \(\Rightarrow AC\perp\left(BDE\right)\)

Từ D kẻ \(DH\perp OE\Rightarrow DH\perp\left(ACM\right)\Rightarrow DH=d\left(D;\left(ACM\right)\right)\)

\(BD=a\sqrt{2}\Rightarrow OD=\frac{1}{2}BD=\frac{a\sqrt{2}}{2}\) ; \(ED=SA=2a\)

\(\frac{1}{DH^2}=\frac{1}{DO^2}+\frac{1}{ED^2}=\frac{9}{4a^2}\Rightarrow DH=\frac{2a}{3}\)

Câu 1 : Tính đạo hàm của hàm số y = \(x\sqrt{x^2-2x}\) A. \(\frac{3x^2-4x}{\sqrt{x^2-2x}}\) B. \(\frac{2x^2-2x-1}{\sqrt{x^2-2x}}\) C. \(\frac{2x^2-3x}{\sqrt{x^2-2x}}\) D. \(\frac{2x-2}{\sqrt{x^2-2x}}\) Câu 2 : Cho hàm số f(x) = sin4x + cos4x , g(x) = sin6x + cos6x . Tính biểu thức 3f'(x) - 2g(x) +2 A. 1 B. 0 C. 3 D. 2 Câu 3 : Tính đạo hàm của hàm số sau y = \(\frac{-3x+4}{x-2}\) A. y' = \(\frac{2}{\left(x-2\right)^2}\) B. y' =...
Đọc tiếp

Câu 1 : Tính đạo hàm của hàm số y = \(x\sqrt{x^2-2x}\)

A. \(\frac{3x^2-4x}{\sqrt{x^2-2x}}\)

B. \(\frac{2x^2-2x-1}{\sqrt{x^2-2x}}\)

C. \(\frac{2x^2-3x}{\sqrt{x^2-2x}}\)

D. \(\frac{2x-2}{\sqrt{x^2-2x}}\)

Câu 2 : Cho hàm số f(x) = sin4x + cos4x , g(x) = sin6x + cos6x . Tính biểu thức 3f'(x) - 2g(x) +2

A. 1 B. 0 C. 3 D. 2

Câu 3 : Tính đạo hàm của hàm số sau y = \(\frac{-3x+4}{x-2}\)

A. y' = \(\frac{2}{\left(x-2\right)^2}\)

B. y' = \(\frac{-11}{\left(x-2\right)^2}\)

C. y' = \(\frac{-5}{\left(x-2\right)^2}\)

D. y' = \(\frac{10}{\left(x-2\right)^2}\)

Câu 4 : Trên đồ thị của hàm số y = \(\frac{3x}{x-2}\) có điểm M(x0 ; y0) (x0<0) sao cho tiếp tuyến tại đó cùng với các trục tọa độ tạo thành một tam giác có diện tích bằng 3/4 . Khi đó x0 + 2y0 bằng

A. \(-\frac{1}{2}\) B. -1 C. \(\frac{1}{2}\) D. 1

Câu 5 : Biết hàm số f (x) - f (2x) có đạo hàm bằng 18 tại x = 1 và đạo hàm bằng 1000 tại x = 2 . Tính đạo hàm của hàm số f (x) - f (4x) tại x = 1

A. -2018 B. 2018 C. 1018 D. -1018

Câu 6 : Tìm m để hàm số y = \(\frac{\left(m+1\right)x^3}{3}-\left(m+1\right)x^2+\left(3m+2\right)+1\) có y' \(\le0\) , \(\forall x\in R\)

A. \(m\le-\frac{1}{2}\)

B. m < -1

C. m \(\le1\)

D. m \(\le-1\)

Câu 7 : Gọi d là tiếp tuyến của đồ thị hàm số y = f (x) = -x3 + x tại điểm M(-2;6) . Hệ số góc của (d) là

A. -11 B. 11 C. 6 D. -12

Câu 8 : Cho hàm số f (x) = -x3 + 3mx2 - 12x + 3 với m là tham số thực . Số giá trị nguyên của m để f' (x)\(\le0\) với \(\forall x\in R\)

A. 1 B. 5 C. 4 D. 3

Câu 9 : Phương trình tiếp tuyến của đường cong y = x3 + 3x2 -2 tại điểm có hoành độ x0 = 1 là

A. y = -9x + 7 B. y = -9x - 7 C. y = 9x + 7 D. y = 9x - 7

Câu 10 : Có bao nhiêu điểm thuộc đồ thị hàm số y = \(\frac{2x-1}{x-1}\) thỏa mãn tiếp tuyến với đồ thị có hệ số góc bằng 2019 ?

A. Vô số B. 0 C. 1 D. 2

Câu 11 : Phương trình tiếp tuyến của đồ thị hàm số y = \(\frac{x-1}{x+2}\) tại điểm có hoành độ bằng -3 là

A. y = -3x + 13 B. y = -3x - 5 C. y = 3x + 5 D. y = 3x + 13

Câu 12 : Cho hàm số y = -2x3 + 6x2 -5 có đồ thị (C) . Phương trình tiếp tuyến của (C) tại điểm M thuộc (C) và có hoành độ bằng 3 là

A. y = -18x + 49 B. y = 18x + 49 C. y = 18x - 49 D. y = -18x - 49

Câu 13 : Hệ số góc k của tiếp tuyến đồ thị hàm số y = x3 + 1 tại điểm M(1;2) là

A. k = 5 B. k = 4 C. k = 3 D. k = 12

Câu 14 : Cho hàm số y = \(-\frac{1}{3}x^3-2x^2-3x+1\) có đồ thị (C) . Trong các tiếp tuyến với (C) , tiếp tuyến có hệ số góc lớn nhất bằng bao nhiêu ?

A. k = 3 B. k = 2 C. k = 0 D. k = 1

Câu 15 : Cho hàm số y = \(\frac{2x-3}{x-2}\) có đồ thị (C) và hai đường thẳng d1 : x = 2 , d2 : y = 2 . Tiếp tuyến bất kì của (C) cắt d1 và d2 lần lượt tại A và B . Khi AB có độ dài nhỏ nhất thì tổng các hoành độ tiếp điểm bằng

A. -3 B. -2 C. 1 D. 4

Câu 16 : Tính vi phân của hàm số y = x2

A. dy = 2xdx B. dy = dx C. dy = -2xdx D. dy = xdx

Câu 17 : Cho hình chóp S.ABC có SA\(\perp\) (ABC) . Gọi H , K lần lượt là trực tâm các tam giác SBC và ABC . Mệnh đề nào sai trong các mệnh đề sau ?

A. \(BC\perp\left(SAH\right)\) B. \(HK\perp\left(SBC\right)\)

C. \(BC\perp\left(SAB\right)\) D. SH , AK và BC đồng quy

Câu 18 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O . Biết rằng SA = SC , SB = SD . Khẳng định nào sau đây là đúng ?

A. \(CD\perp AC\) B. \(CD\perp\left(SBD\right)\) C. \(AB\perp\left(SAC\right)\) D. \(SO\perp\left(ABCD\right)\)

Câu 19 : Cho hình chóp S.ABCD , ABCD là hình thang vuông tại A và B , AD = 2a , AB = BC = a , \(SA\perp\left(ABCD\right)\) . Trong các khẳng định sau , khẳng định nào sai ?

A. \(CD\perp\left(SBC\right)\) B. \(BC\perp\left(SAB\right)\) C. \(CD\perp\left(SAC\right)\) D. \(AB\perp\left(SAD\right)\)

Câu 20 : Hình chóp S.ABCD có đáy là hình vuông , hai mặt bên (SAB) và (SAD) vuông góc với mặt đáy . AH , AK lần lượt là đường cao của tam giác SAB , tam giác SAD . Mệnh đề nào sau đây là sai ?

A. \(HK\perp SC\) B. \(SA\perp AC\) C. \(BC\perp AH\) D. \(AK\perp BD\)

Câu 21 : Cho hình chóp S.ABC có các cạnh SA , SB , SC đôi một vuông góc và SA = SB = SC . Gọi I là trung điểm của AB . Khi đó góc giữa 2 đường thẳng SI và BC bằng

A. 1200 B. 600 C. 900 D. 300

Câu 22 : Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a . Gọi M là trung điểm của AB và \(\alpha\) là góc tạo bởi MC' và mặt phẳng (ABC) . Khi đó \(tan\alpha\) bằng

A. \(\frac{2\sqrt{7}}{7}\) B. \(\frac{\sqrt{3}}{2}\) C. \(\sqrt{\frac{3}{7}}\) D. \(\frac{2\sqrt{3}}{3}\)

Câu 23 : Cho hình chóp S.ABC có đáy là tam giác vuông tại B , AB = 3a , BC = 4a , mặt phẳng (SBC) vuông góc với mặt phẳng (ABC) . Biết SB = \(2a\sqrt{3}\)\(\widehat{SBC}=30^0\) . Tính \(d\left(B;\left(SAC\right)\right)\)

A. \(\frac{3a\sqrt{7}}{14}\) B. \(6a\sqrt{7}\) C. \(\frac{6a\sqrt{7}}{7}\) D. \(a\sqrt{7}\)

Câu 24 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và các cạnh bên bằng nhau . Gọi O là giao điểm của hai đường chéo của đáy . Tìm mặt phẳng vuông góc với SO ?

A. (SAC) B. (SBC) C. (ABCD) D. (SAB)

Câu 25 : Cho hình chóp S.ABC có đáy ABC là tam giác nhọn , cạnh bên SA = SB = SC . Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC) . Khi đó

A. H là tâm đường tròn ngoại tiếp tam giác ABC

B. H là tâm đường tròn nội tiếp tam giác ABC

C. H là trực tâm của tam giác ABC

D. H là trọng tâm của tam giác ABC

Câu 26 : Cho tứ diện ABCD có AB , BC , CD đôi một vuông góc với nhau và AB = a , BC = b , CD = c . Độ dài đoạn thẳng AD bằng

A. \(\sqrt{a^2+b^2+c^2}\)

B. \(\sqrt{-a^2+b^2+c^2}\)

C. \(\sqrt{a^2+b^2-c^2}\)

D. \(\sqrt{a^2-b^2+c^2}\)

help me !!!!!! giải chi tiết từng câu giúp mình với ạ

10
NV
12 tháng 6 2020

25.

H là hình chiếu của S lên (ABC)

Do \(SA=SB=SC\Rightarrow HA=HB=HC\)

\(\Rightarrow\) H là tâm đường tròn ngoại tiếp tam giác ABC

26.

\(\left\{{}\begin{matrix}AB\perp BC\\AB\perp CD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(BCD\right)\) \(\Rightarrow AB\perp BD\)

\(\Rightarrow\Delta ABD\) vuông tại B

Pitago tam giác vuông BCD (vuông tại C):

\(BC^2+CD^2=BD^2\Rightarrow BD^2=b^2+c^2\)

Pitago tam giác vuông ABD:

\(AD^2=AB^2+BC^2=a^2+b^2+c^2\)

\(\Rightarrow AD=\sqrt{a^2+b^2+c^2}\)

NV
12 tháng 6 2020

23.

Gọi H là chân đường cao hạ từ S xuống BC

\(\Rightarrow BH=SB.cos30^0=3a\) ; \(SH=SB.sin30^0=a\sqrt{3}\) ; \(CH=4a-3a=a\)

\(\Rightarrow BC=4HC\Rightarrow d\left(B;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)

Từ H kẻ \(HE\perp AC\) ; từ H kẻ \(HF\perp SE\Rightarrow HF\perp\left(SAC\right)\)

\(\Rightarrow HF=d\left(H;\left(SAC\right)\right)\)

\(HE=CH.sinC=\frac{CH.AB}{AC}=\frac{a.3a}{5a}=\frac{3a}{5}\)

\(\frac{1}{HF^2}=\frac{1}{HE^2}+\frac{1}{SH^2}\Rightarrow HF=\frac{HE.SH}{\sqrt{HE^2+SH^2}}=\frac{3a\sqrt{7}}{14}\)

\(\Rightarrow d\left(B;\left(SAC\right)\right)=4HF=\frac{6a\sqrt{7}}{7}\)

24.

\(SA=SC\Rightarrow SO\perp AC\)

\(SB=SD\Rightarrow SO\perp BD\)

\(\Rightarrow SO\perp\left(ABCD\right)\)