K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2023

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

23 tháng 12 2020

B) Ta có: 2x-2y-x2+2xy-y2

⇔ 2(x-y)-(x2-2xy+y2)

⇔ 2(x-y)-(x-y)2

⇔ (x-y)(2-x+y)

Đúng thì tick nhé

26 tháng 12 2020

câu a đâu

 

21 tháng 10 2023

a) P + Q = (x² + 2x³ - xy² + 5) + (x³ + xy² - 2x²y - 6)

= x² + 2x³ - xy² + 5 + x³ + xy² - 2x²y - 6

= (2x³ + x³) + x² + (-xy² + xy²) - 2x²y + (5 - 6)

= 3x³ + x² - 2x²y - 1

b) Q = P + N

N = Q - P

= (x³ + xy² - 2x²y - 6) - (x² + 2x³ - xy² + 5)

= x³ + xy² - 2x²y - 6 - x² - 2x³ + xy² - 5

= (x³ - 2x³) + (xy² + xy²) - 2x²y - x² + (-6 - 5)

= -x³ + 2xy² - 2x²y - x² - 11

Vậy N = -x³ + 2xy² - 2x²y - x² - 11

27 tháng 10

Tính tổng hai đa thức P và Q rồi tìm bậc của đa thức tổng 

 

9 tháng 10 2016

\(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)

\(5x^2+10x-5y^2+5==5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x+1-y\right)\left(x+1+y\right)\)

\(4x^3-8x^2y+4xy^2=4x\left(x^2-2xy+y^2\right)=4x\left(x-y\right)^2\)

\(x^3+9x^2y-xy=x\left(x^2+9xy-y\right)\)

9 tháng 10 2016

a) \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)

b) \(-5x^2+10x-5y+5=-5\left(x^2-2x+y-1\right)\)

c)\(4x^3-8x^2y+4xy^2=4x\left(x^2-2xy+y^2\right)=4x\left(x-y\right)^2\)

d) \(x^3+9x^2y-xy=x\left(x^2+9xy-y\right)\)

a: 2x^2y-50xy=2xy(x-25)

b: 5x^2-10x=5x(x-2)

c: 5x^3-5x=5x(x^2-1)=5x(x-1)(x+1)

d: \(x^2-xy+x=x\left(x-y+1\right)\)

e: x(x-y)-2(y-x)

=x(x-y)+2(x-y)

=(x-y)(x+2)

f: 4x^2-4xy-8y^2

=4(x^2-xy-2y^2)

=4(x^2-2xy+xy-2y^2)

=4[x(x-2y)+y(x-2y)]

=4(x-2y)(x+y)

f1: x^2ỹ-y^2+y

=(x-y)(x+y)+(x+y)

=(x+y)(x-y+1)

18 tháng 10 2021

1.A

2.C

3.B

4.C

15 tháng 12 2021

a

c

b

c

17 tháng 10 2020

Bài 4.

a) 3xy2 - 45x2y = 3xy( y - 15x )

b) 25y2 - 4x2 + 4x - 1

= 25y2 - ( 4x2 - 4x + 1 )

= ( 5y )2 - ( 2x - 1 )2

= ( 5y - 2x + 1 )( 5y + 2x - 1 )

c) x2 - 5x + xy - 5y

= x( x - 5 ) + y( x - 5 )

= ( x - 5 )( x + y )

d) x2 - 8x - 33

= x2 + 3x - 11x - 33

= x( x + 3 ) - 11( x + 3 )

= ( x + 3 )( x - 11 )

Bài 5.

a) A = ( x - 2 )3 - x2( x - 4 ) + 8

= x3 - 6x2 + 12x - 8 - x3 + 4x2 + 8

= -2x2 + 12x

B = ( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9

= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9

= x - 3 - x2 - 7x - 9

= -x2 - 6x - 12

b) Với x = -1 thì A = -2.(-1)2 + 12.(-1) = -2 - 12 = -14

e) Ta có: \(a^3-a^2-a+1\)

\(=a^2\left(a-1\right)-\left(a-1\right)\)

\(=\left(a-1\right)\left(a^2-1\right)\)

\(=\left(a-1\right)^2\cdot\left(a+1\right)\)

f) Ta có: \(x^3-2xy-x^2y+2y^2\)

\(=x^2\left(x-y\right)-2y\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-2y\right)\)

27 tháng 6 2021

a) \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2+2ab\right)\left(a^2+b^2-2ab\right)=\left(a+b\right)^2.\left(a-b\right)^2\)

b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

c) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)

d) Đề sai ko ???

e) \(a^3-a^2-a+1=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)=\left(a-1\right)^2\left(a+1\right)\)

f) \(x^3-2xy-x^2y+2y^2=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)