Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: 4cm
Câu 2: 6cm
Câu 3: 90o
Câu 4: -108
Câu 5: 2
Câu 6: 14
Câu 7: 43
Câu 8: -1
Câu 9: -3
Câu 10: -26
a) ĐKXĐ : \(x\ne0;x\ne\pm2;x\ne3\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
Đặt \(B=\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\)
\(B=\frac{\left(x+2\right)\left(x+2\right)}{-\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{\left(2-x\right)\left(x-2\right)}{\left(2+x\right)\left(x-2\right)}\)
\(B=\frac{-\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}-\frac{-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-\left(x+2\right)^2-4x^2--\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(B=\frac{-4x}{x-2}\)
\(\Rightarrow A=\frac{-4x}{x-2}:\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(\Leftrightarrow A=\frac{-4x\cdot x^2\cdot\left(2-x\right)}{\left(x-2\right)\cdot x\cdot\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{4x^2\cdot x\cdot\left(x-2\right)}{\left(x-3\right)\cdot x\cdot\left(x-2\right)}\)
\(\Leftrightarrow A=\frac{4x^2}{x-3}\)
b) \(\left|x-7\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\end{cases}}}\)
Mà ĐKXĐ x khác 3 => x = 11
\(\Leftrightarrow A=\frac{4\cdot11^2}{11-3}=\frac{121}{2}\)
c) \(A=\frac{4x^2}{x-3}\)
Để A dương thì hoặc cả tử và mẫu âm hoặc cả tử và mẫu dương
Dễ thấy \(4x^2\ge0\forall x\)
=> Để A dương thì x - 3 dương
hay x - 3 > 0
<=> x > 3
Vậy x > 3 thì A > 0
(Bài dưới được trình bày dựa theo cách trình bày ở Ví dụ 1 trang 50 sgk Toán 8 Tập 2. Bạn có thể rút gọn nếu bạn thích.)
a) - Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x
Vậy A = 3x + 2 + 5x = 8x + 2
- Khi x < 0 ta có 5x < 0 nên |5x| = -5x
Vậy A = 3x + 2 - 5x = -2x + 2
b) - Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x
Vậy B = -4x - 2x + 12 = -6x + 12
- Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x
Vậy B = 4x - 2x + 12 = 2x + 12
c) - Khi x > 5 ta có x - 4 > 1 (trừ hai vế cho 4) hay x - 4 > 0 nên |x - 4| = x - 4
Vậy C = x - 4 - 2x + 12 = -x + 8
d) D = 3x + 2 + x + 5 khi x + 5 ≥ 0
hoặc D = 3x + 2 - (x + 5) khi x + 5 < 0
Vậy D = 4x + 7 khi x ≥ -5
hoặc D = 2x - 3 khi x < -5
(Bài dưới được trình bày dựa theo cách trình bày ở Ví dụ 1 trang 50 sgk Toán 8 Tập 2. Bạn có thể rút gọn nếu bạn thích.)
a) - Khi x ≥ 0 ta có 5x ≥ 0 nên |5x| = 5x
Vậy A = 3x + 2 + 5x = 8x + 2
- Khi x < 0 ta có 5x < 0 nên |5x| = -5x
Vậy A = 3x + 2 - 5x = -2x + 2
b) - Khi x ≤ 0 ta có -4x ≥ 0 (nhân hai vế với số âm) nên |-4x| = -4x
Vậy B = -4x - 2x + 12 = -6x + 12
- Khi x > 0 ta có -4x < 0 nên |-4x| = -(-4x) = 4x
Vậy B = 4x - 2x + 12 = 2x + 12
c) - Khi x > 5 ta có x - 4 > 1 (trừ hai vế cho 4) hay x - 4 > 0 nên |x - 4| = x - 4
Vậy C = x - 4 - 2x + 12 = -x + 8
d) D = 3x + 2 + x + 5 khi x + 5 ≥ 0
hoặc D = 3x + 2 - (x + 5) khi x + 5 < 0
Vậy D = 4x + 7 khi x ≥ -5
hoặc D = 2x - 3 khi x < -5
Để phân thức \(A=\frac{x^2+5x+4}{x^2+x-12}\) không xác định thì \(x^2+x-12=0\)
\(\Rightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,25=0\)
\(\left(x+\frac{1}{2}\right)^2=12,25\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=-4\end{cases}.}\)
A không xác định khi mẫu bằng 0=>\(x^2+x-12=0\Leftrightarrow x^2+4x-3x-12=0\Leftrightarrow x\left(x+4\right)-3\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=3\end{cases}}\)
Câu 1 :
\(\left(2x+3\right)^2\) = \(4x^2+12x+9\)
Vậy :
Để phân thức \(A=\frac{x^2+5x+4}{x^2+x-12}\) không xác định thì \(x^2+x-12=0\)
\(\Rightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}-12,25=0\)
\(\left(x+\frac{1}{2}\right)^2=12,25\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=\frac{7}{2}\\x+\frac{1}{2}=-\frac{7}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=3\\x=-4\end{array}\right.\)