Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- a/ [x/x^2-4 -2(x+2)/x^2-4 +x-2/x^2-4]:[x^2-4/x+2 +10-x^2/x+2] =(x-2x-4+x-2/x^2-4):(x^2-4+10-x^2/x+2) = - 6/x^2-4 nhân với x+2/x^2-4+10-x^2= - 6/(x+2)(x-2) nhân với x+2/6= - 1/x-2.
c/đễ A<0 <=> -1/X-2 <0 <=> x-2<0 <=>x<2
tổng 2 số là 150, tổng của 1/6 số này và 1/9 số kia = 18. Tìm 2 số đó
\(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a\Leftrightarrow\left(x^4-1\right):\left(x^4+1\right)=a\Leftrightarrow x^4=\frac{1+a}{1-a}\)
\(M=\left(\frac{1+a}{1-a}-\frac{1-a}{1+a}\right):\left(\frac{1+a}{1-a}+\frac{1-a}{1+a}\right)=\frac{2a}{1+a^2}\)
Ta có: \(\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a=>\left(\frac{x^4-1}{x^2}\right):\left(\frac{x^4+1}{x^2}\right)=a\)
\(=>\frac{x^4-1}{x^2}.\frac{x^2}{x^4+1}=a=>\frac{x^4-1}{x^4+1}=a=>x^4-1=a\left(x^4+1\right)=ax^4+a\)
\(=>x^4-ax^4=a+1=>x^4=\frac{a+1}{1-a}\)
Thay vào M,ta có:
\(M=\left(x^4-\frac{1}{x^4}\right):\left(x^4+\frac{1}{x^4}\right)=\left(\frac{a+1}{1-a}-\frac{1}{\frac{a+1}{1-a}}\right):\left(\frac{a+1}{1-a}+\frac{1}{\frac{a+1}{1-a}}\right)\)
\(=\left(\frac{a+1}{1-a}-\frac{1-a}{a+1}\right):\left(\frac{a+1}{1-a}+\frac{1-a}{a+1}\right)=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}:\frac{\left(a+1\right)^2+\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}\)
\(=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(1-a\right)\left(a+1\right)}.\frac{\left(1-a\right)\left(a+1\right)}{\left(a+1\right)^2+\left(1-a\right)^2}=\frac{\left(a+1\right)^2-\left(1-a\right)^2}{\left(a+1\right)^2+\left(1-a\right)^2}\)
\(=\frac{a^2+2a+1-\left(1-2a+a^2\right)}{a^2+2a+1+1-2a+a^2}=\frac{a^2+2a+1-1+2a-a^2}{a^2+2a+1+1-2a+a^2}=\frac{4a}{2a^2+2}=\frac{2.2a}{2.\left(a^2+1\right)}=\frac{2a}{a^2+1}\)
Vậy \(M=\frac{2a}{a^2+1}\)
Làm hộ mk, phân tích đa thức thành nhân tử
a^4 b^4 c^4 - 2*a^2*b^2 - 2*b^2*c^2 - 2*c^2*a^2
\(a,\text{để a xác định thì }\hept{\begin{cases}x-2\ne0\\2-x\ne0\end{cases}\Rightarrow x\ne2}\)
\(b,\left[\left(\frac{x+1}{x-2}+\frac{3}{2-x}-3x\right):\frac{1-3x}{x-2}\right]-\frac{x^2+4}{x-2}\)
\(=\left[\left(\frac{x+1}{x-2}-\frac{3}{x-2}-3x\right):\frac{1-3x}{x-2}\right]-\frac{x^2+4}{x-2}\)
\(=\left(1-3x\right)\cdot\frac{\left(x-2\right)}{1-3x}-\frac{x^2+4}{x-2}=\frac{\left(x-2\right)^2}{x-2}-\frac{x^2+4}{x-2}=\frac{-4x}{x-2}\)
Vậy với \(x=\frac{1}{2}\text{ }\Rightarrow A=\frac{-\frac{4.1}{2}}{\frac{1}{2}-2}=\frac{4}{3}\)