Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(n^2+3n+1=t\)(1)
Khi đó: \(a=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
\(\Rightarrow\) a là số chính phương
b) Để a=121 thì \(t^2=121\)\(\Rightarrow t=\pm11\)
+ Với t=11 thì (1) \(\Leftrightarrow n^2+3n+1=11\Leftrightarrow n^2+3n-10=0\)
\(\Leftrightarrow\left(n-2\right)\left(n+5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=-5\end{cases}}\)
+ Với n=-11 thì (1)\(\Leftrightarrow n^2+3n+1=-11\Leftrightarrow n^2+3n+12=0\)
\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2+\frac{39}{4}=0\) ( vô lý)
Do đó, pt vo nghiệm
Vậy để a=121 thì n =2 hoặc n=-5
a: Để (1) là hàm số bậc nhất thì \(\sqrt{m-1}< >0\)
=>m-1>0
=>m>1
b: Để (1) trùng với đường thẳng y=2x-1 thì \(\left\{{}\begin{matrix}\sqrt{m-1}=2\\2n-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-1=4\\2n=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=5\\n=1\end{matrix}\right.\)
Vì đa thức (x−a)(x−10)+1(x−a)(x−10)+1 có thể phân tích thành tích của hai đa thức bậc nhất có hệ số nguyên nên ta chỉ có hai cách phân tích duy nhất là:
1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c)1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c) với b,c∈Zb,c∈Z
Ta sẽ tìm aa trong trường hợp 1)1), trường hợp còn lại làm tương tự
(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc
Đồng nhất, ta được {b+c=−(a+10)bc=10a+1{b+c=−(a+10)bc=10a+1
⇒b,c⇒b,c là hai nghiệm nguyên của PT X2+(a+10)X+10a+1=0X2+(a+10)X+10a+1=0 với aa nguyên
⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4
Vì a−m−10a−m−10 và a+m−10a+m−10 cùng tính chẵn lẻ và a+m−10≥a−m−10a+m−10≥a−m−10 nên:
{a+m−10=2a−m−10=2⇒a=12{a+m−10=2a−m−10=2⇒a=12
Hoặc :
{a+m−10=−2a−m−10=−2⇒a=8
\(x^2-\left(a+10\right)x+10a+1=0\)
\(\Delta=a^2+20a+100-40a-4=\left(a-10\right)^2-4=\left(a-6\right)\left(a-14\right)\)
a thuộc Z => \(\Delta\) là số nguyên ; để TM yêu cầu => \(\Delta\) là số chính phương
=> a =6 ; a =14
a)
(pt1) ; 2k +1 =5 => k =2
(pt2): 2 -1 = vậy k =2 nhận
b)
hệ có nghiệm duy nhất; <=> k khác -1
A nguyên <=> 13 chia hết cho n-1
Hay n-1 là ước của 13= (1;13)
Hay n= 2 hoặc n=14
=>13 chia hết cho n-1
=>n-1 là ước của 13
sau đó bn liệt kê các ước của 13 ra rồi thay n-1 vầy rồi tìm giá trị
k mik nha