\(\sqrt{1+\sqrt{x}}^n + \sqrt{1-\sqrt{x}}^n\)với x, n là nguyên dương...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}-2+\sqrt{3}=VP\)

30 tháng 10 2020

Bài 1.

Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)

\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)

1 tháng 4 2020

1) Khi x = 36 thì A = \(\frac{\sqrt{36}+4}{\sqrt{36}+2}\Leftrightarrow\frac{5}{4}\)

Vậy khi x = 36 thì A = \(\frac{5}{4}\)

2) B = \((\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}):\frac{x+16}{\sqrt{x}+2}\)

= \(\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}.\frac{\sqrt{x}+2}{x+16}=\frac{x+16}{x-16}.\frac{\sqrt{x}+2}{x+16}\)

= \(\frac{\sqrt{x}+2}{x-16}\)

Vậy B = \(\frac{\sqrt{x}+2}{x-16}\)

8 tháng 9 2020

ĐKXD: \(x>0\)

a/ \(C-5=\frac{x+3\sqrt{x}+1}{\sqrt{x}}-5=\frac{x-2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

Do \(x>0\Rightarrow\sqrt{x}>0\) ; \(\left(\sqrt{x-1}\right)^2\ge0\)

\(\Rightarrow C-5\ge0\Rightarrow C\ge5\)

b/ Từ kết quả câu a \(\Rightarrow\frac{7}{C}\le\frac{7}{5}=1,4\)

Do \(x>0\Rightarrow C>0\Rightarrow\frac{7}{C}>0\)

\(\Rightarrow0< \frac{7}{C}\le1,4\) Nên Với mọi x thoả mãn ĐKXĐ thì \(\frac{7}{C}\) có đúng 1 giá trị nguyên là 1