
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 1: Điều kiện xác định
a/ \(\hept{\begin{cases}x\ge0\\x-9\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}}\)
b/ \(Q=\frac{\sqrt{x}-1}{x}+\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(\hept{\begin{cases}x>0\\\sqrt{x}+1\ne0\end{cases}\Rightarrow x>0}\)
c/ \(\hept{\begin{cases}x\ge0\\x-5\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne5\end{cases}}}\)
Câu 2:
a/ ĐKXĐ: \(\hept{\begin{cases}x>0\\\sqrt{x}-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x\ne1\end{cases}}}\)
b/ \(P=\left(1+\frac{1}{\sqrt{x}-1}\right)-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c/ Thay x = 25 vào P ta được: \(P=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)
d/ Ta có: \(P=\frac{\sqrt{5+2\sqrt{6}}+1}{\sqrt{5+2\sqrt{6}}}=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+1}{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}=\frac{\sqrt{3}+\sqrt{2}+1}{\sqrt{3}+\sqrt{2}}\)

\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
ĐK : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne4\end{cases}}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-\sqrt{x}-2\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}-\frac{2x-5\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\frac{1}{\sqrt{x}-2}\)
b) Để P < 1
=> \(\frac{1}{\sqrt{x}-2}< 1\)
<=> \(\frac{1}{\sqrt{x}-2}-1< 0\)
<=> \(\frac{1}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}-2}< 0\)
<=> \(\frac{1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
<=> \(\frac{3-\sqrt{x}}{\sqrt{x}-2}< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}3-\sqrt{x}>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}>-3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 9\\x< 4\end{cases}}\Leftrightarrow x< 4\)
2. \(\hept{\begin{cases}3-\sqrt{x}< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}< -3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>9\\x>4\end{cases}}\Leftrightarrow x>9\)
Kết hợp với ĐK => Với \(\orbr{\begin{cases}x\in\left\{0;2;3\right\}\\x>9\end{cases}}\)thì thỏa mãn đề bài

a/ \(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{x}+2}\)
\(=\frac{x-2}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}}+\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(=\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}\)
b/ \(\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}=\frac{4+2\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}-4}{4+2\sqrt{3}+2\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{4+2\sqrt{3}+\sqrt{3}+1-4}{4+2\sqrt{3}+2\sqrt{3}+2}=\frac{1+3\sqrt{3}}{6+4\sqrt{3}}\)

Đề bài này be bét quá, xin phép sửa lại
a) đk: \(\hept{\begin{cases}x\ge0\\x\ne\left\{1;4\right\}\end{cases}}\)
\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{x-3\sqrt{x}+2}\)
\(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{x-4\sqrt{x}+3-2x+3\sqrt{x}-2+x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(P=\frac{-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
b) Ta có: \(P< 1\)
\(\Leftrightarrow-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}< 0\)
Mà \(\sqrt{x}+1\ge1>0\left(\forall x\right)\)
\(\Rightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}0\le x< 1\\x>4\end{cases}}\)

a) Vì x>=0 và x2=16
=> x=4 => \(\sqrt{x}=2\)
=> B=\(\frac{2\cdot2+3}{4-1}=\frac{7}{3}\)
b) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\frac{x+2\sqrt{x}+1-x+\sqrt{x}+2\sqrt{x}-2}{x-1}\)
\(=\frac{5\sqrt{x}-1}{x-1}\)
=> \(A\left(x-1\right)=5\sqrt{x}-1\left(đpcm\right)\)
c) \(\frac{A}{B}=\frac{5\sqrt{x}-1}{x-1}\cdot\frac{x-1}{2\sqrt{x}+3}=\frac{5\sqrt{x}-1}{2\sqrt{x}+3}=\frac{\frac{5}{2}\left(2\sqrt{x}+3\right)-\frac{17}{2}}{2\sqrt{x}+3}=\frac{5}{2}-\frac{17}{2\left(2\sqrt{x}+3\right)}\)
=> 17 chia hết cho \(2\sqrt{x}+3\)
\(\Rightarrow2\sqrt{x}+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
ta có bảng
\(2\sqrt{x}+3\) | -17 | -1 | 1 | 17 |
\(\sqrt{x}\) | -1 | 7 | -2 | -7 |
x | \(\varnothing\) | 49 | \(\varnothing\) | \(\varnothing\) |
tớ làm tắt thôi nhé, cậu tự trình bày vào bài kiểm tra là được
\(\Leftrightarrow\)\(x=\frac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(\Leftrightarrow x=\frac{4+2\sqrt{3}}{4-3}\)
\(\Leftrightarrow x=4+2\sqrt{3}\)
khi đó \(P=\frac{4+2\sqrt{3}-1}{4+2\sqrt{3}}\)
\(P=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}\)
\(P=\frac{\sqrt{3}.\left(\sqrt{3}+2\right)}{2\left(2+\sqrt{3}\right)}\)
\(P=\frac{\sqrt{3}}{2}\)