Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(A=\frac{2x^2-16x+41}{x^2-8x+22}\) \(=\frac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\frac{3}{\left(x-4\right)^2+6}\ge\frac{1}{2}\)
Dấu '' = '' xảy ra khi x = 4.
Vậy MinA= \(\frac{1}{2}\) tại x = 4.
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
a)\(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left[\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right]\)
\(=\left(1-\frac{-2\left(x^3-3\right)}{\left(x^3+3\right)\left(x^3-3\right)}\right).\frac{4}{x^2\left(x^3+3\right)}:\left[\frac{6\left(x^3-2\right)\left(x^3+2\right)}{x^3\left(x^3+3\right)^2}:\frac{3x^3+6}{2x}\right]\)
\(=\left(\frac{x^3+3}{x^3+3}-\frac{-2}{x^3+3}\right).\frac{4}{x^2\left(x^3+3\right)}:\frac{12x\left(x^3-2\right)}{3x^3\left(x^3+3\right)^2\left(x^3+2\right)}\)
\(=\frac{4\left(x^3+3+2\right)}{x^2\left(x^3+3\right)^2}:\frac{12x\left(x^3-2\right)}{3x^3\left(x^3+3\right)^2\left(x^3+2\right)}=\frac{\left(x^3+5\right)\left(x^3+2\right)}{x^3-2}\)
Mình làm câu a thôi nhé! Rút gọn xong muốn tắt thở luôn à
a) ĐK:\(\begin{cases}x-2\ne0\\x+1\ne0\\x+3\ne0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ne2\\x\ne-1\\x\ne-3\end{cases}\)
b) Có \(A=\frac{2}{x-2}-\frac{2}{\left(x-2\right)\left(x+1\right)}\cdot\left(1+\frac{3x+x^2}{x+3}\right)\)
\(=\frac{2}{x-2}-\frac{2}{\left(x-2\right)\left(x+1\right)}\cdot\left(1+\frac{x\left(3+x\right)}{x+3}\right)\)
\(=\frac{2}{x-2}-\frac{2}{\left(x-2\right)\left(x+1\right)}\cdot\left(1+x\right)\)
\(=\frac{2}{x-2}-\frac{2}{x-2}\)
\(=0\)
Vậy giá trị của biểu thức A không phụ thuộc vào giá trị của x
`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`
`= 2xy`.
Thay `x = 2/3; y = -3/4` vào BT:
`2 . 2/3 . -3/4 = -1.`
`b, x(x-2y) - y(y^2-2x)`
`= x^2 - 2xy - y^3 + 2xy`
`= x^2 - y^3`
Thay `x = 5; y =3` vào BT:
`= 5^2 - 3^3 = 25 - 27 = -2`
a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)
\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)
\(=2xy\)
Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:
\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)
b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)
\(=x^2-2xy-y^3+2xy\)
\(=x^2-y^3\)
Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)
Đk: x \(\ne\)0; x \(\ne\)\(\pm\)3
Ta có: A = \(\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)
A = \(\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{x^2+3\left(3-x\right)}{3\left(x+3\right)\left(3-x\right)}\)
A = \(\frac{x^2-3x+9}{3x\left(x-3\right)}\cdot\frac{3\left(3-x\right)\left(x+3\right)}{x^2-3x+9}\)
A = \(\frac{-\left(x+3\right)}{x}\)
Để A < -1 <=> \(-\frac{\left(x+3\right)}{x}< -1\) <=> \(\frac{-x-3}{x}+1< 0\)
<=> \(\frac{-x-3+x}{x}< 0\) <=> \(-\frac{3}{x}< 0\)
Do -3 <0 => x> 0
Vậy Để A < -1 <=> x > 0 và x khác 3