K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

\(A\)xác định \(\Leftrightarrow x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\ne0\)

\(\Leftrightarrow x^2y^2+1+x^2-x^2y-y+y^2\ne0\)

\(\Leftrightarrow\left(x^2y^2+y^2\right)+\left(x^2+1\right)-\left(x^2y+y\right)\ne0\)

\(\Leftrightarrow y^2\left(x^2+1\right)+\left(x^2+1\right)-y\left(x^2+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2-y+1\right)\ne0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\)

Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall y\end{cases}}\)\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]>0\forall x;y\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\right]\ne0\forall x;y\)

\(\Leftrightarrow A\ne0\forall x;y\)

3 tháng 8 2017

a ) \(A=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4}{x^2-4}\)

\(=\frac{x+2-\left(x-2\right)+x^2+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+8}{x^2-4}\)

b ) \(A=\frac{x^2+8}{x^2-4}=\frac{\left(x^2-4\right)+12}{x^2-4}=1+\frac{12}{x^2-4}\)

Để \(A\in Z\Leftrightarrow12⋮x^2-4\)

\(x^2-4\inƯ\left(12\right)=\left\{-12;-6;-4;-2;-1;1;2;4;6;12\right\}\)

Xét từng thường hợp của x ta tìm đc : \(x=\left\{-4;0;4\right\}\)

3 tháng 8 2017

\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4}{x^2-4}\)

\(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+2^2}{x^2-2^2}\)

\(\frac{4}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+2^2}{x^2-2^2}\)

=\(\frac{4}{x^2-2^2}+\frac{x^2+2^2}{x^2-2^2}\)

\(\frac{4+x^2+2^2}{x^2-2^2}\)

10 tháng 7 2017

a) \(A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right)\div\left(1-\frac{x}{x+2}\right)\)

\(A=\left(\frac{x}{\left(x-2\right)\cdot\left(x+2\right)}+\frac{1}{x+2}-\frac{2}{x-2}\right)\div\left(1-\frac{x}{x+2}\right)\)

\(A=\frac{x+x-2-2\cdot\left(x+2\right)}{\left(x-2\right)\cdot\left(x+2\right)}\div\frac{x+2-x}{x+2}\)

\(A=\frac{2x-2-2x-4}{\left(x-2\right)\cdot\left(x+2\right)}\div\frac{2}{x+2}\)

\(A=\frac{-6}{\left(x-2\right)\cdot\left(x+2\right)}\cdot\frac{x+2}{2}\)

\(\Rightarrow A=\frac{-3}{x-2}\)

b) Với x = -4 . Ta có : 

\(A=\frac{-3}{x-2}=\frac{-3}{-4-2}=\frac{-3}{-6}=\frac{1}{2}\)

1 tháng 8 2017

cho tam giác ABC có 3 góc nhọn , 2 đường cao BE và CF cắt nhau tại H

a/ Chứng minh tam giác AEB ~ tam giác AFC

b/ chứng minh tam giác DEF ~ tam giác ABC

c/ Tia AH cắt BC tại D. Chứng minh FC là tia phân giác góc DFE ?

13 tháng 12 2018

để A nhỏ nhất => x2+1 nhỏ nhất và lớn hơn 0 (vì 2>0 và không đổi)

ta có: \(x^2+1\ge1\)

dấu = xảy ra khi x2=0

=> x=0

Vậy Min A=\(\frac{1}{2}\)khi x=0