K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

10 tháng 1 2017

Từ \(10x^2+5x-3=0\) suy ra \(x^2+5x-2=-9x^2+1\) thay vào P được

\(P=\frac{3\left(x^2+5x-2\right)}{9x^2-1}=\frac{3\left(-9x^2+1\right)}{9x^2-1}=\frac{-3\left(9x^2-1\right)}{9x^2-1}=-3\)

19 tháng 3 2017

10x^2 + 5x - 3 =0 hình như pt này vô nghiệm

12 tháng 1 2018

\(ĐKXĐ:\)\(x\ne\left\{0;1;2;3;4;5\right\}\)

\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)

\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}\)

\(=\frac{1}{x-5}-\frac{1}{x}\)

\(=\frac{5}{x\left(x-5\right)}\)

Ta có:     \(x^3-x^2+2=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-2x+2\right)=0\)

Xét:    \(x^2-2x+2=\left(x-1\right)^2+1\)\(>0\)

\(\Rightarrow\)\(x+1=0\)

\(\Leftrightarrow\)\(x=-1\)(t/m)

Vậy   tại     \(x=-1\)  thì:

          \(P=\frac{5}{-1\left(-1-5\right)}=\frac{5}{6}\)

ĐKXĐ \(x\ne0,1,2,3,4,5\)

\(P=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

\(P=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)

\(P=\frac{1}{x-5}-\frac{1}{x}\)

\(P=\frac{5}{x\left(x-5\right)}\)

24 tháng 12 2016

P=(3x^2+15x-6)/(9x^2-1)

=[-3(9x^2-1)+30x^2+15x-9]/(9x^2-1)

=-3(9x^2-1)/(9x^2-1) + (30x^2+15x-9)/(9x^2-1)

=-3 + 3(10x^2+5x-3)/(9x^2-1)

=-3 + 0 =-3 (do 10x^2+5x-3=0)

21 tháng 7 2019
https://i.imgur.com/jTzVBzQ.jpg
21 tháng 7 2019
https://i.imgur.com/1Xvpjty.jpg
9 tháng 2 2017

a/ ĐKXĐ ....

A=\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

=\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)

=\(\frac{1}{x}-\frac{1}{x-5}\)

=\(-\frac{5}{x^2-5x}\)

b/ \(x^3-x+2=0\Leftrightarrow\left(x+1\right)\left(\left(x-1\right)^2+1\right)=0\)

<=> x=-1, thay vào tính nốt

26 tháng 11 2016

a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)

\(=\frac{x^2+4x+4}{x^2}\)

\(\left(\frac{x+2}{x}\right)^2\)

=>phép chia = 1 với mọi x # 0 và x#-1

b)Cm tương tự

26 tháng 11 2016

khó quá