Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung nên phương trình sẽ có 2 nghiệm trái dấu
PT có 2 nghiệm trái dấu thì \(\left\{{}\begin{matrix}\Delta'>0\\P< 0\end{matrix}\right.\)
PT hoành độ giao điểm giữa ( P ) và ( d ) là \(x^2-2x+m-9=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(m-9\right)>0\\P=m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-m+10>0\\m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< 10\\m< 9\end{matrix}\right.\\ \Leftrightarrow m< 9\)
Vậy m < 9 thì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung
Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1
↔ x 2 − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
Đáp án: A
a: f(2)=2^2=4
thay x=2 và y=4 vào (d), ta được:
4(m-1)+m=4
=>5m-4=4
=>m=8/5
b: PTHĐGĐ là;
x^2-2(m-1)x-m=0
Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì -m<0
=>m>0
x1^2+2(m-1)x2=6
=>x1^2+x2(x1+x2)=6
=>x1^2+x2^2+x1x2=6
=>(x1+x2)^2-x1x2=6
=>(2m-2)^2-(-m)-6=0
=>4m^2-8m+4+m-6=0
=>m=2(nhận) hoặc m=-1/4(loại)
PTHĐGĐ là:
x^2-(2m+1)x+m^2+m=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung thì m^2+m<0
=>-1<m<0
2 điểm nằm về 2 phía của trục tung --> 2 no trái dấu
hoành độ giao điểm la no của pt:x^2=4x-m^2+16
<=>x^2-4x+m^2-16=0
Pt có 2 no trái dấu <=> x1.x2<0
<=> m^2-16<0 ( ht Vi-et)
<=>m^2<16
<=>-4<m<4
Pt hoành độ giao điểm:
\(x^2=2x+m\Leftrightarrow x^2-2x-m=0\) (1)
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow-m< 0\Rightarrow m>0\)