Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ đỉnh: \(x=-\frac{b}{2a}=1\)
\(\Rightarrow\) Tung độ đỉnh: \(y=m-2m-3m-2=-4m-2\)
Do đỉnh thuộc \(y=3x\Rightarrow-4m-2=3.1\Rightarrow m=-\frac{5}{4}\)
A thuộc y=x+2 nên A(x;x+2)
Theo đề, ta có:
\(\left\{{}\begin{matrix}x=\dfrac{2m}{2}=m\\x+2=-\dfrac{\left(2m\right)^2-4\left(m+3\right)}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\x+2=-\dfrac{4m^2-4m-12}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\x+2=-m^2+m+3\end{matrix}\right.\Leftrightarrow-m^2+m+3-2=m\)
=>-m^2+m+1-m=0
=>1-m^2=0
=>m=1
Câu 1: (P) : \(y=mx^2-2mx-3m-2\) ( m≠ 0)
(d) : y = 3x - 1
(P) có đỉnh I \(\left\{{}\begin{matrix}x_I=\dfrac{-b}{2a}=\dfrac{-\left(-2m\right)}{2m}=1\\y_I=m.1-2m.1-3m-2=-4m-2\end{matrix}\right.\)
⇔ đỉnh I ( 1; -4m - 2 )
Vì I ( 1; -4m - 2) ∈ (d) ⇔ -4m - 2 = 3 . 1 -1 ⇔ m= -1
Vậy m = -1
Câu 2: (P) : y = \(ax^2-4x+c\)
Vì (P) có hoành độ đỉnh bằng -3
⇔ x = -3
⇔ \(\dfrac{-b}{2a}=-3\)
⇔ \(\dfrac{-\left(-4\right)}{2a}=-3\)
⇔ a = \(-\dfrac{2}{3}\)
Mà M ( -2;1) ∈ (P) ⇔ 1 = 4 . \(\left(-\dfrac{2}{3}\right)\)- 4 . (-2) +c
⇔ 1= \(\dfrac{16}{3}\) +c
⇔ c = \(-\dfrac{13}{3}\)
Vậy S = a+c = \(\left(-\dfrac{2}{3}\right)+\left(-\dfrac{13}{3}\right)\)= -5
\(y=mx^2-2mx-m^2-1\)
\(=m\left(x^2-2x\right)-m^2-1\)
Điểm cố định của (d) có tọa độ là:
\(\left\{{}\begin{matrix}x^2-2x=0\\y=-m^2-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(x-2\right)=0\\y=-m^2-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;2\right\}\\y=-m^2-1\end{matrix}\right.\)
TH1: x=0
Thay x=0 và \(y=-m^2-1\) vào y=x-2, ta được:
\(-m^2-1=0-2=-2\)
=>\(m^2+1=2\)
=>\(m^2=1\)
=>\(\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
TH2: x=2
Thay x=2 và \(y=-m^2-1\) vào y=x-2, ta được:
\(-m^2-1=2-2=0\)
=>\(m^2+1=0\)
=>\(m^2=-1\)(vô lý)
Xét ptr hoành độ của `(d)` và `(P)` có:
`(m-1)x^2+2mx+3m-1=2x+m`
`<=>(m-1)x^2+2(m-1)x+2m-1=0` `(1)`
`(d)` tiếp xúc `(P)<=>` Ptr `(1)` có nghiệm kép
`<=>{(a \ne 0),(\Delta'=0):}`
`<=>{(m-1 \ne 0),((m-1)^2-(m-1)(2m-1)=0):}`
`<=>{(m \ne 1),(-m(m-1)=0):}`
`<=>m=0`
`->B`
Phương trình hoành độ giao điểm : \(m-1x2+2mx+3m-1=2x+m\)
\(\Leftrightarrow m-1x2+2m-1x+2m-1=0\)
Để d tiếp xúc với P khi và chỉ khi phương trình có nghiệm kép
\(\Leftrightarrow m-1\ne0\Delta'=m-15-m-12m-1=-mm-1=0\) \(\Leftrightarrow m\ne1m=0m=1\Leftrightarrow m=0\)
\(\Rightarrow\) chọn \(B\)