K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2022

Xét ptr hoành độ của `(d)` và `(P)` có:

       `(m-1)x^2+2mx+3m-1=2x+m`

`<=>(m-1)x^2+2(m-1)x+2m-1=0`  `(1)`

`(d)` tiếp xúc `(P)<=>` Ptr `(1)` có nghiệm kép

     `<=>{(a \ne 0),(\Delta'=0):}`

     `<=>{(m-1 \ne 0),((m-1)^2-(m-1)(2m-1)=0):}`

     `<=>{(m \ne 1),(-m(m-1)=0):}`

     `<=>m=0`

    `->B`

15 tháng 5 2022

Phương trình hoành độ giao điểm : \(m-1x2+2mx+3m-1=2x+m\)

\(\Leftrightarrow m-1x2+2m-1x+2m-1=0\)

Để d tiếp xúc với P khi và chỉ khi phương trình có nghiệm kép
\(\Leftrightarrow m-1\ne0\Delta'=m-15-m-12m-1=-mm-1=0\) \(\Leftrightarrow m\ne1m=0m=1\Leftrightarrow m=0\)

\(\Rightarrow\) chọn \(B\)

15 tháng 5 2022

lỗi ạ

15 tháng 5 2022

lx

27 tháng 10 2018

Câu 1: (P) : \(y=mx^2-2mx-3m-2\) ( m≠ 0)

(d) : y = 3x - 1

(P) có đỉnh I \(\left\{{}\begin{matrix}x_I=\dfrac{-b}{2a}=\dfrac{-\left(-2m\right)}{2m}=1\\y_I=m.1-2m.1-3m-2=-4m-2\end{matrix}\right.\)

⇔ đỉnh I ( 1; -4m - 2 )

Vì I ( 1; -4m - 2) ∈ (d) ⇔ -4m - 2 = 3 . 1 -1 ⇔ m= -1

Vậy m = -1

Câu 2: (P) : y = \(ax^2-4x+c\)

Vì (P) có hoành độ đỉnh bằng -3

⇔ x = -3

\(\dfrac{-b}{2a}=-3\)

\(\dfrac{-\left(-4\right)}{2a}=-3\)

⇔ a = \(-\dfrac{2}{3}\)

Mà M ( -2;1) ∈ (P) ⇔ 1 = 4 . \(\left(-\dfrac{2}{3}\right)\)- 4 . (-2) +c

⇔ 1= \(\dfrac{16}{3}\) +c

⇔ c = \(-\dfrac{13}{3}\)

Vậy S = a+c = \(\left(-\dfrac{2}{3}\right)+\left(-\dfrac{13}{3}\right)\)= -5

NV
31 tháng 10 2019

Hoành độ đỉnh: \(x=-\frac{b}{2a}=1\)

\(\Rightarrow\) Tung độ đỉnh: \(y=m-2m-3m-2=-4m-2\)

Do đỉnh thuộc \(y=3x\Rightarrow-4m-2=3.1\Rightarrow m=-\frac{5}{4}\)

11 tháng 10 2019

undefined

28 tháng 1 2022

28 tháng 1 2022

undefined

undefined

A thuộc y=x+2 nên A(x;x+2)

Theo đề, ta có:

\(\left\{{}\begin{matrix}x=\dfrac{2m}{2}=m\\x+2=-\dfrac{\left(2m\right)^2-4\left(m+3\right)}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\x+2=-\dfrac{4m^2-4m-12}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\x+2=-m^2+m+3\end{matrix}\right.\Leftrightarrow-m^2+m+3-2=m\)

=>-m^2+m+1-m=0

=>1-m^2=0

=>m=1

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2-2x+4=2mx-m^2\)

=>\(x^2-2x+4-2mx+m^2=0\)

=>\(x^2-x\left(2m+2\right)+m^2+4=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+4\right)\)

\(=4m^2+8m+4-4m^2-16=8m-12\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>8m-12>0

=>8m>12

=>\(m>\dfrac{3}{2}\)

Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m-2\right)}{1}=2m+2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4}{1}=m^2+4\end{matrix}\right.\)

\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)

=>\(x_1^2+x_2\left(x_1+x_2\right)=3m^2+12+4\)

=>\(x_1^2+x_1\cdot x_2+x_2^2=3x_1x_2+4\)

=>\(x_1^2-2x_1x_2+x_2^2=4\)

=>\(\left(x_1-x_2\right)^2=4\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2=4\)

=>\(\left(2m+2\right)^2-4\left(m^2+4\right)=4\)

=>\(4m^2+8m+4-4m^2-16=4\)

=>8m-12=4

=>8m=16

=>m=2(nhận)

NV
13 tháng 10 2019

a/ Để hàm số khác định trên R

\(\Rightarrow x^2-6m+m-2\ne0\) \(\forall x\)

\(\Rightarrow\Delta'=9-\left(m-2\right)< 0\Rightarrow m>11\)

b/ Tương tự: \(\Delta'=m^2-4< 0\Rightarrow-2< m< 2\)

c/ ĐKXĐ: \(\left\{{}\begin{matrix}2x-3m+4\ge0\\x+m-1\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge\frac{3m-4}{2}\\x\ne1-m\end{matrix}\right.\)

Để hàm xác số định trên D thì: \(\left\{{}\begin{matrix}\frac{3m-4}{2}\le0\\1-m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le\frac{4}{3}\\m>1\end{matrix}\right.\)

\(\Rightarrow1< m\le\frac{4}{3}\)