Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (d1)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)
Vậy: (d1): y=3x+b
Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Thay x=-2 và y=2 vào (d1), ta được:
\(3\cdot\left(-2\right)+b=2\)
\(\Leftrightarrow b=8\)(thỏa ĐK)
Vậy: (d1): y=3x+8
để \(\left(d1\right)\) sogn song với \(\left(d\right)\)
\(< =>\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)
để (d1) cắt (P) tại A có hoành độ -2\(=>x=-2\)
\(=>\dfrac{1}{2}x^2=3x+b< =>\dfrac{1}{2}\left(-2\right)^2=3\left(-2\right)+b=>b=8\left(tm\right)\)
=>\(\left(d1\right):y=3x+8\)
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
1. ta có pt đường thẳng (d) có dạng y=ax+b
vì phương trình đường thẳng (d) song song với đường thẳng (∆) y=x+2
=>\(\left\{{}\begin{matrix}a=1\\b\ne2\end{matrix}\right.\)
vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có hoành độ bằng -12( cái kia bạn viết là -12 à?)
=>x=-12
thay x=-12 vào pt (P) ta được: y=(-12)^2=144
thay x=-12,y=144, a=1 vòa pt (d) ta có:
144=-12+b=>b=156
=>pt (d) dạng y=x+156
2. pt (d) có dạng y=ax+b
vì phương trình đường thẳng (d) vuông góc với đường thẳng (∆) y=x+1
=> a.a'=-1<=>a.1=-1=>a=-1
vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có tung độ bằng 9
=>y=9=>x=+-3
với x=3,y=9,a=-1 thay vào pt(d) ta được:
9=-3+b=>b=12=>pt(d): y=-x+12
với x=-3,y=9,a=-1 thay vào pt (d)
=>9=3+b=>b=6=>pt(d) dạng: y=x+6
ý 1 để bạn tự vẽ nhé
2. Xét phương trình hoành độ giao điểm :
\(x^2=5x+6\Leftrightarrow x^2-5x-6=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\) tương ứng hai nghiệm trên ta có tọa độ của hai giao điểm là ( -1,1) và (6,36)
3. d' song song với d nên suy ra d' có dạng : \(y=5x+m\text{ với }m\ne6\)
phương trình hoành độ giao điểm khi đó là : \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\text{ có hai nghiệm x1 x2 thỏa mãn }x_1.x_2=24\)
mà theo viet ta có : \(x_1.x_2=\frac{c}{a}=-m\Rightarrow m=-24\)
Thay lại phương trình ta có : \(x^2-5x+24=0\text{ vô nghiệm, do đó không tồn tại d' thỏa mãn đề bài}\)
HD: (d'): y= ax+b (a≠0).
- (d') // (d) nên \(\left\{{}\begin{matrix}a=5\\b\ne6\end{matrix}\right.\)⇒ (d'): y=5x+b
- Xét Pt hoành độ giao điểm của (P) với (d'):
x2=5x+b ⇔x2-5x-b =0 (1).
*) điện kiện có 2 nghiệm
*) theo viet P=-b=24 => b=-24
Giả sử \(\left(d'\right):y=ax+b\)
\(\left(d'\right)//\left(d\right)\)
\(\Rightarrow\) phương trình : \(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b\ne-1\end{matrix}\right.\)
\(\Rightarrow y=-x+b\)
cắt (P)tại diểm có hoành độ =4
\(\Rightarrow x=4\in\left(P\right)\\ \Leftrightarrow y=\left(\dfrac{1}{4}.4\right)^2=1\)Vậy phương trình \(\left(d'\right)\) đi qua điểm có tọa độ \(\left(4;1\right)\)\(\Rightarrow4=-1+b\\ \Leftrightarrow b=5\)Vậy pt là : \(y=-x+5\)