Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm d và (P):
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Leftrightarrow m< -\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\Leftrightarrow m=1\)
Tọa độ A là:
x=0 và y=0(2m+1)+m-2=m-2
=>OA=|m-2|
Tọa độ B là:
y=0 và (2m+1)x+m-2=0
=>x=(2-m)/(2m+1) và y=0
=>OB=|(m-2)/(2m+1)|
Để ΔOAB cân thì OA=OB
=>|m-2|=|m-2|/|2m+1|
=>|m-2|(1-1/|2m+1|)=0
=>m-2=0 hoặc 2m+1=-1 hoặc 2m+1=1
=>S={2;-1;0}
Tổng các phần tử của S là 1
Phương trình hoành độ giao điểm:
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Rightarrow m>-\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\)
\(\Rightarrow m=1\) (thỏa mãn)
a: PTHĐGĐ là;
x^2-(2m-3)x+m^2-3m=0
Δ=4m^2-12m+9-4m^2+12m=9>0
=>(P) luôn cắt (d) tại hai điểm pb
b: |x1|+|x2|=3
=>x1^2+x2^2+2|x1x2|=9
=>(2m-3)^2-2(m^2-3m)+2|m^2-3m|=9
TH1: m>=3 hoặc m<=0
=>(2m-3)^2=9
=>m=3(nhận) hoặc m=0(nhận)
Th2: 0<m<3
=>4m^2-12m+9-4(m^2-3m)=9
=>4m^2-12m-4m^2+12m=0
=>0m=0(luôn đúng)
Hoành độ giao điểm tm pt
\(x^2-mx+3=0\)
\(\Delta=m^2-4.3=m^2-12\)
Để pt có 2 nghiệm pb khi m^2 - 12 > 0
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=4\)
Thay vào ta được \(m^2-6-2.3=4\Leftrightarrow m^2-16=0\Leftrightarrow m=4;m=-4\)(tm)
PTHHĐGĐ là:
x^2-2x-m^2+2m=0
Δ=(-2)^2-4(-m^2+2m)
=4+4m^2+8m=(2m+2)^2
Để phương trình có hai nghiệm phân biệt thì 2m+2<>0
=>m<>-1
x1^2+2x2=3m
=>x1^2+x2(x1+x2)=3m
=>x1^2+x2^2+x1x2=3m
=>(x1+x2)^2-x1x2=3m
=>2^2-(-m^2+2m)=3m
=>4+m^2-2m-3m=0
=>m^2-5m+4=0
=>m=1 hoặc m=4
a: f(2)=2^2=4
thay x=2 và y=4 vào (d), ta được:
4(m-1)+m=4
=>5m-4=4
=>m=8/5
b: PTHĐGĐ là;
x^2-2(m-1)x-m=0
Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì -m<0
=>m>0
x1^2+2(m-1)x2=6
=>x1^2+x2(x1+x2)=6
=>x1^2+x2^2+x1x2=6
=>(x1+x2)^2-x1x2=6
=>(2m-2)^2-(-m)-6=0
=>4m^2-8m+4+m-6=0
=>m=2(nhận) hoặc m=-1/4(loại)
Xét phương trình hoành độ giao điểm của (d) và (P):
x 2 = m x + 5 ⇔ x 2 − m x − 5 = 0 .
Ta có tích hệ số a c = − 5 < 0 nên phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi m hay thẳng (d) cắt parabol (P) tại hai điểm phân biệt với mọi m.
Theo hệ thức Vi-ét ta có x 1 + x 2 = m x 1 x 2 = − 5 Ta có:
x 1 > x 2 ⇔ x 1 2 > x 2 2 ⇔ x 1 2 − x 2 2 > 0 ⇒ x 1 + x 2 x 1 − x 2 > 0
Theo giả thiết: x 1 < x 2 ⇔ x 1 − x 2 < 0 do đó x 1 + x 2 < 0 ⇔ m < 0 .
Vậy thỏa mãn yêu cầu bài toán.
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1