K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

a) Khi m = 2 thì: \(\hept{\begin{cases}y=x^2\\y=2x+3\end{cases}}\)

Hoành độ giao điểm (P) và (d) là nghiệm của PT: \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}\)

Vậy tọa độ giao điểm của (P) và (d) là \(\left(-1;1\right)\) và \(\left(3;9\right)\)

b) Hoành độ giao điểm của (P) và (d) là nghiệm của PT:

\(x^2=mx+3\Leftrightarrow x^2-mx-3=0\)

Vì \(ac=1\cdot\left(-3\right)< 0\) => PT luôn có 2 nghiệm phân biệt

Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)

Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{3}{2}\Leftrightarrow\frac{-m}{3}=\frac{3}{2}\Rightarrow m=-\frac{9}{2}\)

Vậy \(m=-\frac{9}{2}\)

15 tháng 5 2021

a) Xét phương trình hoành độ giao điểm chung của (d) và (P) :

\(x^2=\left(2m-1\right)x-m^2+2\)

\(\Leftrightarrow x^2-\left(2m-1\right)x+m^2-2=0\left(1\right)\)

Thay m=2 vào pt (1) ta được:

\(x^2-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=2\Rightarrow y=4\end{cases}}\)

Tọa độ giao điểm của (d) và (P) khi m=2 là \(A\left(1;1\right);B\left(2;4\right)\)

b) \(\Delta_{\left(1\right)}=\left(2m-1\right)^2-4m^2+8\)

\(=4m^2-4m+1-4m^2+8\)

\(=9-4m\)

Để pt (1) có 2 n ghiệm pb \(\Leftrightarrow9-4m>0\Leftrightarrow m< \frac{9}{4}\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2m-1\\x_1.x_2=m^2-2\left(1\right)\end{cases}}\)

Ta có: \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1-3x_2=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x_1+3x_2=6m-3\\x_1-3x_2=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{3m+2}{2}\\x_2=\frac{m-4}{2}\end{cases}\left(3\right)}\)

Thay (3) vào (2) ta được:

\(\frac{3m+2}{2}.\frac{m-4}{2}=m^2-2\)

\(\Leftrightarrow\frac{3m^2-10m-8}{4}=m^2-2\)

\(\Rightarrow3m^2-10m-8=4m^2-8\)

\(\Leftrightarrow m^2+10m=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=-10\end{cases}\left(tm\right)}\)

Vậy ...

30 tháng 10 2021

PTHĐGĐ là:

\(-x^2=-mx+m-1\)

\(\Leftrightarrow x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot1\left(m-1\right)\)

\(=m^2-4m+4\)

\(=\left(m-2\right)^2\ge0\forall m\)

Do đó: Phương trình luôn có nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta có:,

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=17\)

\(\Leftrightarrow m^2-2\left(m-1\right)-17=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)

22 tháng 4 2021

Phương trình hoành độ giao điểm là :

\(-x^2=mx+2\)

\(\Leftrightarrow x^2+mx+2=0\)

Lại có : \(\Delta=m^2-8>0\)

Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)

\(\left(x1+1\right)\left(x2+1\right)=0\)

\(\Leftrightarrow x1x2+x1+x1+1=0\)

\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)

 

x2=mx+2−x2=mx+2

x2+mx+2=0⇔x2+mx+2=0

chúng ta sẽ lại có : Δ=m28>0Δ=m2−8>0

Theo định lí Vi - et ta có :

{x1+x2=mx1x2=2{x1+x2=−mx1x2=2

\(\trái(x1+1\phải)\trái(x2+1\phải)=0\)

x1x2+x1+x1+1=0⇔x1x2+x1+x1+1=0

2m+1=0m=3

a) Xét phương trình hoành độ giao điểm

  \(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)

  Vậy tọa độ giao điểm là \(\left(1;1\right)\) và \(\left(-2;4\right)\)

  

bạn xem lại đề phần b 

undefined

PTHĐGĐ là;

x^2-6x+m-3=0

Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48

Để PT có hai nghiệm phân biệt thì -4m+48>0

=>m<12

(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2

=>(x1-1)(-x1x2+x2+x1x2-1)=2

=>x1x2-(x1+x2)+1=2

=>m-3-6+1=2

=>m-8=2

=>m=10

5 tháng 6 2021

undefined