\(P ( P ) : y = x ^2\) và đường thẳng (d)\(: y =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

ta có y = x2 /2 = 2 => x= -2; 2

mà hoành độ dương nên lấy x = 2

thay x=2 vào y = k(x-1) = 2 => k = 2

 

9 tháng 5 2017

Đk: \(k\ge0\)

a)

A(0,2\(\sqrt{3}\))

x=0

\(\Rightarrow y=\sqrt{k}+\sqrt{3}\)

\(\Rightarrow\sqrt{k}=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)

\(\Rightarrow k=3\) nhận

b)

\(B\left(1;0\right)\)

\(\Leftrightarrow\dfrac{\sqrt{k}+1}{\sqrt{3}-1}.1+\sqrt{k}+\sqrt{3}=0\)

\(\Leftrightarrow\sqrt{k}+1+\sqrt{k}.\left(\sqrt{3}-1\right)+\sqrt{3}\left(\sqrt{3}-1\right)=0\)

\(\Leftrightarrow\sqrt{3}\sqrt{k}+4-\sqrt{3}=0\)

\(4>\sqrt{3}\Rightarrow Vo..N_0\)

(d) không đi qua điểm B(1;0)

c) Sửa đề \(k\ge0\)

\(\Leftrightarrow y=\dfrac{\sqrt{k}.x+x+\sqrt{3}\sqrt{k}-\sqrt{k}+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)

\(\Leftrightarrow y=\dfrac{\sqrt{k}\left(x+\sqrt{3}-1\right)+x+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)

Với \(x=1-\sqrt{3}\) => y=\(\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{3}-1\) không phụ thuộc k

Điểm cố định

D\(\left(\left(1-\sqrt{3}\right);\left(\sqrt{3}+1\right)\right)\)

30 tháng 5 2017

Đường thẳng song song và đường thẳng cắt nhau

Đường thẳng song song và đường thẳng cắt nhau

DD
5 tháng 6 2021

Phương trình hoành độ giao điểm (d) và (P) là: 

\(x^2=-\left(m+2\right)x-m-1\)

\(\Leftrightarrow x^2+\left(m+2\right)x+m+1=0\)(1) 

Để (d) cắt (P) tại hai điểm phân biệt thì phương trình (1) có hai nghiêm phân biệt. Khi đó: 

\(\Delta>0\Leftrightarrow\left(m+2\right)^2-4\left(m+1\right)=m^2>0\Leftrightarrow m\ne0\)

Với \(m\ne0\)phương trình (1) có hai nghiệm phân biệt \(x_1,x_2;x_1>x_2\).

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m+1\end{cases}}\)

Do hai điểm nằm khác phía với trục tung nên \(x_1,x_2\)trái dấu nên \(m+1< 0\Leftrightarrow m< -1\).

\(\sqrt{y_1}+\sqrt{y_2}=\sqrt{x_1^2}+\sqrt{x_2^2}=\left|x_1\right|+\left|x_2\right|=x_1-x_2=2\)(do hai điểm nằm khác phía với trục tung) 

\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-m}{2}\\x_2=\frac{-m-4}{2}\end{cases}}\)

\(x_1x_2=-\frac{m}{2}\left(\frac{-m-4}{2}\right)=\frac{m\left(m+4\right)}{4}=m+1\Leftrightarrow m=\pm2\).

Vậy \(m=-2\).