\(y=ax^2\) va hai duong thang sau \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

a. \(\left(d_2\right):4x+5y-11=0\Leftrightarrow y=\frac{11-4x}{5}=\frac{-4}{5}x+\frac{11}{5}\)

Vì (d1), (d2) đồng quy nên ta có PTHĐGĐ:

\(\frac{4}{3}x-1=\frac{-4}{5}x+\frac{11}{5}\)

\(\Leftrightarrow x=1,5\Rightarrow y=1\)

Vì (P), (d1), (d2) đồng quy nên ta thay x=1,5; y=1 vào (P):

\(1=a.\left(1,5\right)^2\)

\(\Leftrightarrow a=\frac{1}{2,25}=\frac{4}{9}\left(TM\right)\)

b. Tự vẽ.

c. Vì (P), (d2) đồng quy nên ta có PTHĐGĐ:

\(\frac{4}{9}x^2=\frac{-4}{5}x+\frac{11}{5}\)

\(\Leftrightarrow\frac{4}{9}x^2+\frac{4}{5}x-\frac{11}{5}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\frac{3}{2}\\x_2=\frac{-33}{10}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}y_1=1\\y_2=\frac{121}{25}\end{matrix}\right.\)

Vậy g\(d_3\perp d_1\Rightarrow a'.\frac{4}{3}=-1\Leftrightarrow a'=\frac{-3}{4}\)iao điểm còn lại là của (P) và (d2) là \(\left(\frac{-33}{10};\frac{121}{25}\right)\)

d. Gọi \(d_3:y=a'x+b'\left(a'\ne0\right)\)là pt đt cần tìm.

Vì \(d_3\perp d_1\Rightarrow a'.\frac{4}{3}=-1\Leftrightarrow a'=\frac{-3}{4}\)

Vì (P) tx d3 nên ta có PTHĐGĐ:

\(\frac{4}{9}x^2-a'x-b'=0\)có Δ=0

\(\Rightarrow a'^2-\frac{16}{9}b'=0\)

\(\Rightarrow\frac{9}{16}-\frac{16}{9}b'=0\)

\(\Leftrightarrow b'=\frac{81}{256}\)

Vậy \(d_3:y=\frac{-3}{4}x+\frac{81}{256}\)

11 tháng 7 2017

Hoành độ giao điểm  \(d_1;d_2\)là nghiệm của phương trình \(2x-3=x-2\Rightarrow x=1\Rightarrow y=-1\Rightarrow A\left(1;-1\right)\)

Hoành độ giao điểm \(d_2;d_3\)là nghiệm của phương trình \(x-2=4x-2\Rightarrow x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\)

Hoành độ giao điểm \(d_1;d_3\)là nghiệm của phương trình \(2x-3=4x-2\Rightarrow x=-\frac{1}{2}\Rightarrow y=-4\Rightarrow C\left(-\frac{1}{2};-4\right)\)

Gọi \(G\left(\frac{x_A+x_B+x_C}{3};\frac{y_A+y_B+y_C}{3}\right)\)là trọng tâm tam giác ABC

Khi đó \(\frac{x_A+x_B+x_C}{3}=\frac{1+0-\frac{1}{2}}{3}=\frac{1}{6}\)

\(\frac{y_A+y_B+y_C}{3}=\frac{-1-2-4}{3}=-\frac{7}{3}\)

Vậy \(G\left(\frac{1}{6};-\frac{7}{3}\right)\) 

  

26 tháng 2 2022

a, bạn tự vẽ nhé 

b, Gọi ptđt (D1) có dạng y = ax + b 

(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)

=> (D1) : y = x/2 + b 

Hoành độ giao điểm tm pt 

\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)

\(\Delta'=1-\left(-4b\right)=1+4b\)

Để (D1) tiếp xúc (P) hay pt có nghiệm kép 

\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)

suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)

toạ độ M là tương giao của cái nào bạn ? 

1 tháng 8 2018

Câu 1:

Câu 2:

Không có vÄn bản thay thế tá»± Äá»ng nà o.

Do d cắt \(Ox\) tại \(A\Rightarrow A\left(2;0\right)\)

Do d cắt \(Oy\) tại \(B\Rightarrow B\left(0;2\right)\)

\(\Rightarrow OA=\sqrt{\left(0-2\right)^2+\left(0-0\right)^2}=2\\ OB=\sqrt{\left(0-0\right)^2+\left(0-2\right)^2}=2\\ \Rightarrow S_{AOB}=\dfrac{OA\cdot OB}{2}=\dfrac{2\cdot2}{2}=2\)

1 tháng 8 2018

a) Giao điểm \(d_1;d_2\) có tọa độ \(x_o;y_0\)

\(Ta\text{ }có:2x_0+4=-2x_0+4\\ \Leftrightarrow4x_0=0\\ \Leftrightarrow x_0=0\\ \Leftrightarrow y_0=2\cdot0+4=4\)

Tọa độ của giao điểm \(d_1;d_2\)\(0;4\)

b)

Không có vÄn bản thay thế tá»± Äá»ng nà o.

2 tháng 10 2021

a) Vẽ tương đối (d1), (d2)    

O y x 6 -4 d1 -1 -3 d2

b) Phương trình hoành độ giao điểm của (d1) và (d2):

\(\frac{3}{2}\)\(x+6\)\(=\) \(-3x-3\)

\(\Leftrightarrow\)\(\frac{9}{2}\)\(x=\)\(-9\)

\(\Leftrightarrow\)\(x=\)\(-2\)

\(\Rightarrow\)\(y=3\)

Vậy giao điểm của (d1) và (d2) là \(\left(-2;3\right)\)

c) Gọi phương trình đường thẳng cần tìm là (d): y = ax + b 

(d) // (d1) => (d):\(\frac{3}{2}\) \(x+b\)

A \(\in\)(d2) => A \((\)\(\frac{-4}{3}\)\(;1\)\()\)

Thay tọa độ A vào đường thẳng (d) ta có :

1 = \(\frac{3}{2}\) .\(\frac{-4}{3}\)+ b

\(\Leftrightarrow\)b = 3

Vậy (d): y =\(\frac{3}{2}\) \(x+3\)

:3

NV
28 tháng 1 2019

Phương trình hoành độ giao điểm:

\(\dfrac{3}{2}x+4=-2x+11\Rightarrow x=2\Rightarrow y=7\)

Vậy \(M\left(2;7\right)\)

\(x_A=-2\Rightarrow y_A=\dfrac{3}{2}x_A+4=1\Rightarrow A\left(-2;1\right)\)

Câu b có nhiều cách giải, 1 cách giải đơn giản không cần lập pt đường thẳng AM là cộng trừ diện tích

Qua trên trục Ox lấy 2 điểm có cùng hoành độ với A và M là \(B\left(-2;0\right)\)\(C\left(2;0\right)\) \(\Rightarrow AB//CM\)\(AB\perp BC;BC\perp CM\)

\(\Rightarrow\Delta OAB\) vuông tại B, \(\Delta OCM\) vuông tại C và \(ABCM\) là hình thang vuông

\(\Rightarrow S_{AOM}=S_{ABCM}-S_{OAB}-S_{OCM}\)

\(\Rightarrow S_{AOM}=\dfrac{1}{2}\left(AB+CM\right).BC-\dfrac{1}{2}AB.OB-\dfrac{1}{2}OC.CM\)

Với \(AB=y_A-y_B=1;CM=y_M-y_C=7;BC=x_C-x_B=4\)

\(OB=x_O-x_B=2;OC=x_C-x_O=2\)

\(\Rightarrow S_{AOM}=16-1-7=8\) (đvdt)