Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Điểm cố định của (d) là:
x=0 và y=m*0+2=2
2: PTHĐGĐ là:
x2-mx-2=0
a=1; b=-m; c=-2
Vì a*c<0
nên (P) luôn cắt (d) tại hai điểm khác phía so với trục tung
a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua
=> yA = mxA + 1 với mọi m
=> xA.m + 1 - yA = 0 với mọi m
<=> xA = 0 và 1 - yA = 0
<=> xA = 0 ; yA = 1
Vậy A(0;1)
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x2 = mx + 1
<=> x2 - mx - 1 = 0
\(\Delta\) = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
Theo Vi - et ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
cj ơi, nó có trog câu hỏi tương tự rồi ạ, cô Loan giải rồi ạ!!^^
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x2 = mx + 1
<=> x2 - mx - 1 = 0
$\Delta$Δ = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
Theo Vi - et ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx+2m-1=0(*)$
Để $(p)$ và $(d)$ cắt nhau tại 2 điểm phân biệt thì pt $(*)$ có 2 nghiệm phân biệt
$\Leftrightarrow \Delta'=m^2-(2m-1)>0\Leftrightarrow (m-1)^2>0\Leftrightarrow m\neq 1$
Áp dụng định lý Viet:
$x_1+x_2=2m$
$x_1x_2=2m-1$
$(P)$ và $(d)$ cắt nhau tại 2 điểm nằm khác phía trục tung
$\Leftrightarrow x_1x_2<0$
$\Leftrightarrow 2m-1<0\Leftrightarrow m< \frac{1}{2}$
Khoảng cách từ 2 giao điểm đến trục hoành là:
$|y_1|+|y_2|=|x_1^2|+|x_2^2|=5$
$\Leftrightarrow x_1^2+x_2^2=5$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=5$
$\Leftrightarrow (2m)^2-2(2m-1)=5$
$\Leftrightarrow 4m^2-4m-3=0$
$m=\frac{-1}{2}$ hoặc $m=\frac{3}{2}$
Vì $m\neq 1$ và $m< \frac{1}{2}$ nên $m=\frac{-1}{2}$
Pt hoành độ giao điểm:
\(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\) (1)
d cắt (P) tại 2 điểm pb nằm ở 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow1.\left(m-1\right)< 0\)
\(\Leftrightarrow m< 1\)
a: PTHĐGĐ là:
x^2-(2m+1)x+2m-4=0
Δ=(2m+1)^2-4(2m-4)
=4m^2+4m+1-8m+16
=4m^2-4m+17=(2m-1)^2+16>=16>0 với mọi m
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: x1+x2=2m+1;x1x2=2m-4
HK=4
=>|x1-x2|=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=4\)
=>\(\sqrt{4m^2+4m+1-8m+16}=4\)
=>4m^2-4m+17=16
=>m=1/2
Pt hoành độ giao điểm (d) và (P):
\(x^2=mx+2\Leftrightarrow x^2-mx-2=0\) (1)
\(ac=-2< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu hay (d) luôn cắt (P) tại 2 điểm pb nằm khác phía trục tung