K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

vì p là số nguyên tố và 7 cũng là số nguyên tố nên p+7 là số nguyên tố

t mình nhak+

12 tháng 7 2016

Đề sai nha bn, mk ví dụ cho dễ hiểu

P = 3 thì p + 14 = 17, đều là số nguyên tố nhưng p + 7 = 10, là hợp số, vô lí

Có lẽ đề nên sửa thành chứng minh p + 7 là hợp số nhưng như này thì đơn giản quá

Do p và p + 14 đều nguyên tố => p lẻ => p + 7 chẵn => p + 7 chia hết cho 2

Mà 1 < 2 < p + 7 => p + 7 là hợp số

13 tháng 12 2016

RẤT THỦ CÔNG LUN!

ví dụ p = 3

p=3 là số nguyên tố

p^2+8=3^2+8=17 cũng là số nguyên tố

=>p^3+14=3^3+14=27+14=41

mình giải dở hơi không nên k hihi

14 tháng 12 2016

mk vẫn k nhe TRẦN HÀ TRANG

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

11 tháng 11 2015

vi p la so nguyen to

đặt p = có dạng 3k, 3k+1, 3k+2

Thay vào

+>p+10=3k+10

p+14=3k+14(chọn)

+>p+10=3k+1+10=3k+11

p+14=3k+1+14=3k+15=>loại

+>p+10=3k+2+10=3k+12=>loại

Từ các bt trên suy ra snt cần tìm là 3

Các câu sau làm tuong tu

 

30 tháng 10 2015

Xét p =2 

=> p+14 = 2+14 =16 ( là hợp số , loại )

Xet p> 3 => p =3k+1 ; 3k+2

Voi p= 3k+1

=> 3k+1+14 =3k+15 = 3(k+5) chia hết cho 3   ( là hợp số loại ) 

=> p= 3k+2

Với p =3k+2 

=> p+7 =3k+2+7 = 3k+9 = 3(k+3) chia hết cho 3 ( la hop so ) 

=> Điều phải chứng minh 

29 tháng 11 2020

p=2 thì loại

p=3 thì thỏa

p>3 thì p có dạng 3k+1 hoặc 3k+2( k nguyên dương) 

Nếu: p=3k+1 thì p+14=3k+15 chia hết cho 3 ; lớn hơn 3 (vô lí)

p=3k+2 thì p+4=3k+6 chia hết cho 3; lơn hơn 3 (vô lí)

vậy: p=3

mấy cái kia cũng làm thế này nhé!

13 tháng 8 2015

1) Ta có : P và P+14 là số nguyên tố thì P là số lẻ 

nên P+17 là số chẵn suy ra P+17 là hợp số.

7 tháng 11 2017

làm sao thì tự làm đi

1 tháng 11 2015

Bài 2 : c)

+Nếu p = 2 ⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)

⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.

Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp : 

 - Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !