K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

Ta thấy nếu một trong 3 số x, y, z bằng 0 thì 2 số còn lại cũng bằng 0 và M = 0

Xét trường hợp \(xyz\ne0\) :

Đặt \(2^x=3^y=6^{-z}=k>0\). Khi đó \(2=k^{\frac{1}{x}};3=k^{\frac{1}{y}};6=k^{-\frac{1}{z}}\)

mà \(2.3=6\) nên \(k^{\frac{1}{x}}.k^{\frac{1}{y}}=k^{-\frac{1}{z}}\)

                                    \(\Leftrightarrow k^{\frac{1}{x}+\frac{1}{y}}=k^{-\frac{1}{z}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

                                                             \(\Leftrightarrow xy+yz+zx=0\)

Vậy trong mọi trường hợp, ta đều có : \(M=0\)

NV
21 tháng 3 2019

Nhìn 2 vế của hàm số thì có vẻ ta cần phân tích biểu thức vế trái về dạng \(\left[f\left(x\right).u\left(x\right)\right]'=f\left(x\right).u'\left(x\right)+u\left(x\right).f'\left(x\right)\), ta cần tìm thằng \(u\left(x\right)\) này

Biến đổi 1 chút xíu: \(\frac{\left[f\left(x\right).u\left(x\right)\right]'}{u\left(x\right)}=\frac{u'\left(x\right)}{u\left(x\right)}f\left(x\right)+f'\left(x\right)\) (1) hay vào bài toán:

\(\left(\frac{x+2}{x+1}\right)f\left(x\right)+f'\left(x\right)=\frac{e^x}{x+1}\) (2)

Nhìn (1) và (2) thì rõ ràng ta thấy \(\frac{u'\left(x\right)}{u\left(x\right)}=\frac{x+2}{x+1}=1+\frac{1}{x+1}\)

Lấy nguyên hàm 2 vế:

\(ln\left(u\left(x\right)\right)=\int\left(1+\frac{1}{x+1}\right)dx=x+ln\left(x+1\right)\)

\(\Rightarrow u\left(x\right)=e^{x+ln\left(x+1\right)}=e^x.e^{ln\left(x+1\right)}=e^x.\left(x+1\right)\)

Vậy ta đã tìm xong hàm \(u\left(x\right)\)

Vế trái bây giờ cần biến đổi về dạng:

\(\left[f\left(x\right).e^x\left(x+1\right)\right]'=e^x\left(x+2\right).f\left(x\right)+f'\left(x\right).e^x\left(x+1\right).f'\left(x\right)\)

Để tạo thành điều này, ta cần nhân \(e^x\) vào 2 vế của biểu thức ban đầu:

\(e^x\left(x+2\right)f\left(x\right)+e^x\left(x+1\right)f'\left(x\right)=e^{2x}\)

\(\Leftrightarrow\left[f\left(x\right).e^x.\left(x+1\right)\right]'=e^{2x}\)

Lấy nguyên hàm 2 vế:

\(f\left(x\right).e^x\left(x+1\right)=\int e^{2x}dx=\frac{1}{2}e^{2x}+C\)

Do \(f\left(0\right)=\frac{1}{2}\Rightarrow f\left(0\right).e^0=\frac{1}{2}e^0+C\Rightarrow C=0\)

Vậy \(f\left(x\right).e^x\left(x+1\right)=\frac{1}{2}e^{2x}\Rightarrow f\left(x\right)=\frac{1}{2}\frac{e^{2x}}{e^x\left(x+1\right)}=\frac{e^x}{2\left(x+1\right)}\)

\(\Rightarrow f\left(2\right)=\frac{e^2}{2\left(2+1\right)}=\frac{e^2}{6}\)

Chọn C

NV
3 tháng 6 2019

Câu 1:

Lấy logarit cơ số tự nhiên 2 vế:

\(x.lny+e^y.x\ge y.lnx+y.e^x\)

\(\Leftrightarrow\frac{lny+e^y}{y}\ge\frac{lnx+e^x}{x}\)

Xét hàm \(f\left(t\right)=\frac{lnt+e^t}{t}\) với \(t>1\)

\(f'\left(t\right)=\frac{\left(e^t+\frac{1}{t}\right).t-lnt-e^t}{t^2}=\frac{t.e^t+1-e^t-lnt}{t^2}\)

Xét \(g\left(t\right)=t.e^t+1-e^t-lnt\Rightarrow g'\left(t\right)=e^t+t.e^t-e^t-\frac{1}{t}\)

\(g'\left(t\right)=t.e^t-\frac{1}{t}=\frac{t^2.e^t-1}{t}>0\) \(\forall t>1\)

\(\Rightarrow g\left(t\right)\) đồng biến \(\Rightarrow g\left(t\right)>g\left(1\right)=1>0\) \(\forall t>1\)

\(\Rightarrow f'\left(t\right)=\frac{g\left(t\right)}{t^2}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)\ge f\left(t_2\right)\Leftrightarrow t_1\ge t_2\)

\(\Rightarrow f\left(y\right)\ge f\left(x\right)\Leftrightarrow y\ge x\) \(\Rightarrow log_xy\ge1>0\)

\(P=log_x\left(xy\right)^{\frac{1}{2}}+log_yx=\frac{1}{2}\left(1+log_xy\right)+\frac{1}{log_xy}\)

\(P=\frac{1}{2}+\frac{1}{2}log_xy+\frac{1}{log_xy}\ge\frac{1}{2}+2\sqrt{\frac{log_xy}{2log_xy}}=\frac{1}{2}+\sqrt{2}\)

NV
3 tháng 6 2019

\(f'\left(x\right)=\frac{1}{x-1}\Rightarrow\int f'\left(x\right)dx=\int\frac{1}{x-1}dx\)

\(\Rightarrow f\left(x\right)=ln\left|x-1\right|+C\)

\(\Rightarrow f\left(x\right)=\left\{{}\begin{matrix}ln\left|x-1\right|+C_1\left(x>1\right)\\ln\left|x-1\right|+C_2\left(x< 1\right)\end{matrix}\right.\)

\(f\left(0\right)=2018\Leftrightarrow2018=ln\left|0-1\right|+C_2\Rightarrow C_2=2018\)

\(f\left(2\right)=2019\Rightarrow2019=ln\left|2-1\right|+C_1\Rightarrow C_1=2019\)

\(\Rightarrow f\left(x\right)=\left\{{}\begin{matrix}ln\left|x-1\right|+2019\left(x>1\right)\\ln\left|x-1\right|+2018\left(x< 1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(3\right)=2019+ln2\\f\left(-1\right)=2018+ln2\end{matrix}\right.\) \(\Rightarrow S=1\)

6 tháng 9 2020

Câu 2. Đặt A=x2+y2+1

Nhập \(2^A=\left(A-2x+1\right)4^x\) vào máy tính Casio. Cho x=0.01, tìm A

Máy sẽ giải ra, A=1.02=1+2x

\(\Leftrightarrow x^2+y^2+1=1+2x\)

\(\Leftrightarrow x^2+y^2-2x=1\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=1\) (C)

Có (C) là đường tròn tâm (1,0) bán kính R=1

Lại có: P=\(\frac{8x+4}{2x-y+1}\)

\(\Leftrightarrow x\left(2P-8\right)-yP+P-4=0\) (Q)

Có (Q) là phương trình đường thẳng.

Để x,y có nghiệm thì đường thẳng và đường tròn giao nhau nghĩa là d(I,(Q))\(\le R\)

\(\Leftrightarrow\frac{\left|x\left(2P-8\right)-yP+P-4\right|}{\sqrt{\left(2P-8\right)^2+P^2}}\le1\)

\(\Leftrightarrow\frac{\left|2P-8+P-4\right|}{\sqrt{\left(2P-8\right)^2+1}}\le1\)

\(\Leftrightarrow\left(3P-12\right)^2\le5P^2-32P+64\)

\(\Leftrightarrow4P^2-40P+80\le0\)

\(\Leftrightarrow5-\sqrt{5}\le P\le5+\sqrt{5}\)

Vậy GTNN của P gần số 3 nhất. Chọn C

NV
11 tháng 8 2020

\(y'=\frac{m^2+m+2}{\left(1-x\right)^2}=\frac{\left(m+\frac{1}{2}\right)^2+\frac{7}{4}}{\left(1-x\right)^2}>0\)

Hàm đồng biến trên \(\left[-4;-2\right]\)

\(\Rightarrow\max\limits_{\left[-4;-2\right]}y=y\left(-2\right)=-\frac{m^2+2m+2}{3}\)

\(\Rightarrow-\frac{m^2+2m+2}{3}=-\frac{1}{3}\Rightarrow m^2+2m+2=1\)

\(\Rightarrow m=-1\)

23 tháng 1 2019

24 tháng 3 2016

Ta có \(y'=3x^2-6\left(m+1\right)x+9\)

Hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) \(\Leftrightarrow\) phương trình \(y'=0\) có hai nghiệm phân biệt là  \(x_1,x_2\)

\(\Leftrightarrow\) \(x^2-2\left(m+1\right)x+3=0\) có hai nghiệm phân biêt  \(x_1,x_2\) \(\Leftrightarrow\Delta'=\left(m+1\right)^2-3\Leftrightarrow\begin{cases}m>-1+\sqrt{3}\\m<-1-\sqrt{3}\end{cases}\) (1)Theo định lí Viet ta có  \(x_1+x_2=2\left(m+1\right)\) \(x_1,x_2=3\)Khi đó \(\left|x_1-x_2\right|\le2\)  \(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\le4\)                        \(\Leftrightarrow4\left(m+1\right)^2-12\le4\)                        \(\Leftrightarrow\left(m+1\right)^2\le4\)                        \(\Leftrightarrow-3\le m\)\(\le1\) (2)Từ (1) và (2) suy ra giá trị của m là \(-3\le m<-1-\sqrt{3}\) và\(-1+\sqrt{3}\)<m\(\le1\)  
1 nếu \(\int_0^2\) f(x)dx=-10 thì \(\int_0^2f\left(2x\right)dx\) bằng 2 cho số phức z thỏa z+\(\)\(z+3\overline{z}=8+14i\). Phần ảo của số phức đã cho bằng 3 diện tích hình phẳng giói hạn bỏi các đường y =lnx, y=0, x=\(\frac{1}{e}\) và x=e 4 biết \(\int_0^{\frac{\pi}{3}}f\left(x\right)=4\) , giá trị của \(\int_0^{\frac{\pi}{3}}\left[f\left(x\right)+2sinx\right]dx\) 5 cho hai số thực x và y thỏa mãn (4x+y)+(y-x)i=(x+2y-6)+(3x-1)i với i là...
Đọc tiếp

1 nếu \(\int_0^2\) f(x)dx=-10 thì \(\int_0^2f\left(2x\right)dx\) bằng

2 cho số phức z thỏa z+\(\)\(z+3\overline{z}=8+14i\). Phần ảo của số phức đã cho bằng

3 diện tích hình phẳng giói hạn bỏi các đường y =lnx, y=0, x=\(\frac{1}{e}\) và x=e

4 biết \(\int_0^{\frac{\pi}{3}}f\left(x\right)=4\) , giá trị của \(\int_0^{\frac{\pi}{3}}\left[f\left(x\right)+2sinx\right]dx\)

5 cho hai số thực x và y thỏa mãn (4x+y)+(y-x)i=(x+2y-6)+(3x-1)i với i là đơn vị ảo . Gía trị của 6x-y bằng

6 họ tất cả nguyên hàm của hàm số f(x)=\(\frac{x+2}{x+1}\) trên khoảng (-1,\(+\infty\)) là

7 trong ko gian Oxyz, cho hai điểm M (-3;1;2) và N (1;3;-3) , mat95 phẳng vuông góc với MN tại điểm M có pt là

8 cho hình nón có chiều cao bằng \(a\sqrt{6}\) và thiết diện đi qua trục của khối nón đó là tam giác đều, thể tích khối nón bằng

9 cho số phức z thỏa mãn 2(\(\overline{z}\) +i)+(2+i)z=6+5i. Mô đun của số phức z bằng

10 trong ko gian Oxyz, cho \(\overline{a}\left(2;3;-1\right),\overline{b}\left(-1;0;2\right)\) . Tính \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)\)

11 họ tất cả các nguyên hàm của hàm số f(x) =x^4 -3e^x là

12 cho hình chóp tứ giác đều có tất cả các cạnh bằng 2a. Diện tích mặt cầu ngoại tiếp hình chóp đã cho bằng

13 cho hàm số f(x) liên tục trên R , biết e^X là một nguyên hàm của hàm số \(f\left(x\right)e^{-x}\) . Họ tất cả các nguyên hàm của hàm số x.\(f^,\left(x\right)là\)

14 biết\(\int\frac{dx}{e^x+e^{-x}+2}\) =\(a\left(e^x+1\right)^b+C\) với a,b,c \(\in Z\) . Tính S=2a-3b

15 họ tất cả các nguyên hàm của ham số y =6xlnx trên khoảng \(\left(0;+\infty\right)\)

16 cho hình trụ có chiều cao bằng 4a. Biết rằng khi cắt hình trụ bởi một mặt phẳng song song với trục và cách trục một khoảng 2a, thiết diện thu dc là một hình vuông. Thể tích khối trụ dc giới hạn bởi hình trụ đã cho bằng

17 trong ko gian oxyz, cho điểm M (1;-3;2) và mặt phang73 (P) :x-3y-2z+5=0 , biết mặt phẳng (Q) :ax-2y+bz-7=0 đi qua M và vuông góc (P) , giá trị của 3a+2b bằng

18 cho hình nón có bán kính bằng \(a\sqrt{3}\) và chiêu cao a. Một mp thay đổi qa đỉnh nón và cắt hình nón theo thiết diện là tam giác cân. Tính diện tích lớn nhất tam giác cân đó

11
AH
Akai Haruma
Giáo viên
20 tháng 7 2020

18.

Mặt phẳng đi qua đỉnh hình nón cắt hình nón theo thiết diện tam giác cân $ABC$ với $A$ là đỉnh hình nón.

Kẻ $OH\perp BC$ tại $H$.

Chiều cao của tam giác $ABC$ là:

$AH=\sqrt{AO^2+OH^2}=\sqrt{a^2+OH^2}$

Lại có:

$BH=\sqrt{OB^2-OH^2}=\sqrt{(a\sqrt{3})^2-OH^2}=\sqrt{3a^2-OH^2}$

$\Rightarrow BC=2BH=2\sqrt{3a^2-OH^2}$

Diện tích tam giác $ABC$:

$S=\frac{AH.BC}{2}=\sqrt{a^2+OH^2}.\sqrt{3a^2-OH^2}=\sqrt{(a^2+OH^2)(3a^2-OH^2)}$

$\leq \frac{a^2+OH^2+3a^2-OH^2}{2}=2a^2$ theo BĐT AM-GM

Vậy $S_{\max}=2a^2$

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

17.

MP $(Q)$ đi qua $M$ nên:

$ax_M-2y_M+bz_M-7=0\Leftrightarrow a+6+2b-7=0$

$\Leftrightarrow a+2b=1(1)$

Mặt khác $(P)\perp (Q)$ nên VTPT của $(P)$ vuông góc với VTPT của $(Q)$

$\Leftrightarrow (1,-3,-2)\perp (a,-2,b)$

$\Leftrightarrow a+6-2b=0$

$\Leftrightarrow a-2b=-6(2)$

Từ $(1);(2)\Rightarrow a=\frac{-5}{2}; b=\frac{7}{4}$

$\Rightarrow 3a+2b=-4$