\(⋮\)12

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐỂ MÌNH GIẢI LUÔN CHO , CÁC BẠN VÀO THAM KHẢO NHÉ , THẤY ĐÚNG THÌ CHO XIN 3K NHA :

*Cách 1 :Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).

* Cách 2 : Vậy ta sẽ chứng minh bằng phản chứng 

- giả sử p + p + 2 không chia hết cho 12 <> p + 1 không chia hết cho 6 
<> p = 6n hoạc p = 6n + 1 .... hoạc p = 6n + 4 
- với p = 6n ( n >= 1) => p là hợp số mâu thuẫn 
- với p = 6n + 1 ( n >= 1) => p + 2 = 6n + 3 = 3(2n + 1) là hợp số => mâu thuẫn 
- .... 
- với p = 6n + 4 ( n>= 0) => p cũng là hợp số 
Vậy p + 1 phải chia hết cho 6 hay p + p + 2 phải chia hết cho 12
0
 
 
0
 
8 tháng 4 2019

*Cách 1 :Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).

* Cách 2 : Vậy ta sẽ chứng minh bằng phản chứng 

- giả sử p + p + 2 không chia hết cho 12 <> p + 1 không chia hết cho 6 
<> p = 6n hoạc p = 6n + 1 .... hoạc p = 6n + 4 
- với p = 6n ( n >= 1) => p là hợp số mâu thuẫn 
- với p = 6n + 1 ( n >= 1) => p + 2 = 6n + 3 = 3(2n + 1) là hợp số => mâu thuẫn 
- .... 
- với p = 6n + 4 ( n>= 0) => p cũng là hợp số 
Vậy p + 1 phải chia hết cho 6 hay p + p + 2 phải chia hết cho 12

30 tháng 10 2018

1) Điều cần chứng minh \(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

hay \(ab+ac< ab+bc\).

Thật vậy,ta có: \(a< b\Rightarrow ac< bc\) (nhân hai vế với c)

Cộng thêm ab vào hai vế,ta được: \(ab+ac< ab+bc\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}^{\left(đpcm\right)}\)

13 tháng 9 2019

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{a}{a+b+c}=1\)

và \(A< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=2\)

Suy ra 1 < A < 2 nên A không là số nguyên

19 tháng 7 2016

Do x; y nguyên tố > 3 nên x; y không chia hết cho 3 => x2,y2 không chia hết cho 3

Mà x2,y2 là số chính phương => x2;y2 đều chia 3 dư 1

=> x2 - y2 chia hết cho 3 (1)

Do x;y nguyên tố > 3 => x;y lẻ => x2;y2 lẻ

Mà x2;y2 là số chính phương => x2;y2 đều chia 8 dư 1

=> x2 - y2 chia hết cho 8 (2)

Từ (1) và (2), do (3;8)=1 => x2 - y2 chia hết cho 24

=> đpcm

19 tháng 7 2016

Do x; y nguyên tố > 3 nên x; y không chia hết cho 3 => x2,y2 không chia hết cho 3

Mà x2,y2 là số chính phương => x2;y2 đều chia 3 dư 1

=> x2 - y2 chia hết cho 3 (1)

Do x;y nguyên tố > 3 => x;y lẻ => x2;y2 lẻ

Mà x2;y2 là số chính phương => x2;y2 đều chia 8 dư 1

=> x2 - y2 chia hết cho 8 (2)

Từ (1) và (2), do (3;8)=1 => x2 - y2 chia hết cho 24

=> đpcm

13 tháng 11 2016

Do \(n>2\)

=> \(2^n>2^2=4\) ma 4 > 3

=>\(2^n>3\)

=>\(2^n=\begin{cases}3k+1\\3k+2\end{cases}\)

Neu \(2^n=3k+2\)

=>\(2^n+1=3k+2+1=3k+3⋮3\) ( trai nguoc voi de bai )

=>\(2^n=3k+1\)

=> \(2^n-1=3k+1-1=3k⋮3\)

Vay \(2^n-1\) la hop so

 

 

 

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50