\(3^p-2^p-1⋮42p\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Dễ dàng chứng minh được \(3^p-2^p-1⋮6\)
Ta có \(3^p-2^p-1=3^p+4^p-\left(4^p+2^p+1\right)\) chia hết cho 7
\(\left(2^p-1\right)\left(4^p+2^p+1\right)=8^p-1\) chia hết cho 7
Ta chứng minh \(2^p-1\) ko chia hết cho 7 bằng cách
Xét \(p=3k+1,3k+2\)
Áp dụng định lí Fermat nhỏ : \(3^p-3⋮p,2^p-2⋮p\) suy ra đpcm

1 tháng 7 2018

Hắc Hường lê thị hương giang Akai Haruma Trần Thọ Đạt

DƯƠNG PHAN KHÁNH DƯƠNG Nguyễn Huy Tú

Mashiro Shiina Nguyễn Thanh Hằng Mysterious Person

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Bài 1:

$a^2-1=(a-1)(a+1)$

Vì $a$ là số nguyên tố lớn hơn $3$ nên $a$ không chia hết cho $3$. Suy ra $a$ chia $3$ dư $1$ hoặc $2$

Nếu $a$ chia $3$ dư $1\Rightarrow a-1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$

Nếu $a$ chia $3$ dư $2\Rightarrow a+1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$

Vậy $a^2-1\vdots 3(1)$

Mặt khác, $a$ là số nguyên tố lớn hơn $3$ thì $a$ lẻ. Do đó $a$ có dạng $4k+1$ hoặc $4k+3$ ($k\in\mathbb{Z}$)

Nếu \(a=4k+1\Rightarrow a^2-1=(4k+1)^2-1=16k^2+8k\vdots 8\)

Nếu \(a=4k+3\Rightarrow a^2-1=(4k+3)^2-1=16k^2+24k+8\vdots 8\)

Vậy $a^2-1\vdots 8(2)$

Từ $(1);(2)$ mà $(3,8)=1$ nên $a^2-1\vdots 24$ (đpcm)

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Bài 2:

Từ bài 1 ta thấy rằng với mọi số $a$ là số nguyên tố lớn hơn 3 thì $a^2-1\vdots 24(1)$

Tương tự $b^2-1\vdots 24(2)$

Từ \((1);(2)\Rightarrow (a^2-1)-(b^2-1)\vdots 24\)

\(\Leftrightarrow a^2-b^2\vdots 24\) (đpcm)

5 tháng 12 2016

Câu 3: 824

11 tháng 12 2016

Câu 1:13

Câu 2:36

Câu 3:824

5 tháng 11 2016

nơi bài 2 là Cho p là số nguyên tố > 7 nha