\(⋮\)6p

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

Cái này bạn lấy ở đâu vậy?

29 tháng 9 2020

ta có \(2^n\)\(⋮\)2

=>\(2^n-1⋮1\)

=>\(2^n-1\)là hợp số

29 tháng 9 2020

\(p^3+p^2+1\)

=\(p^2+2+p^3-1\)

=

26 tháng 6 2018

Lũy thừa các số thực mang dấu duong khi số mũ chẵn .
Mà 2 là số chẵn
=> x^2 dương ; y^2 dương .
Số dương nhân với số dương ta luôn được kết quả là số dương
=> x^2y^2 dương
Vì số dương thuộc tập hợp các số nguyên nên x^2y^2 nguyên

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

5 tháng 9 2016

Ta có : \(p^2-1=\left(p-1\right)\left(p+1\right)\)

Vì p là số nguyên tố, p > 3 nên p không chia hết cho 3

Xét tích ba số nguyên liên tiếp : (p-1).p.(p+1) . Số này chia hết cho 3 vì một trong ba số ắt tìm được một số chia hết cho 3. Mà p không chia hết cho 3

=> (p-1)(p+1) = p2-1 chia hết cho 3 (1)

Ta chứng minh bài toán phụ : Với mọi số nguyên tố lớn hơn 3 đều viết được dưới dạng \(6m+1\) hoặc \(6m-1\)

Thật vậy , mọi số nguyên đều viết được dưới dạng \(6m\pm1,6m\pm2,6m\pm3\)

Mọi số nguyên tố lớn hơn 3 thì không chia hết cho 2 và 3 nên chúng chỉ có dạng \(6m\pm1\)

Xét với số nguyên tố \(p=6m\pm1\Rightarrow p^2-1=36m^2\pm12m=12m\left(3m\pm1\right)⋮8\) (2)

Từ (1) và (2) suy ra p chia hết cho 3 và 8 , mà (3,8) = 1

=> p chia hết cho 24

5 tháng 9 2016

+ Do p nguyên tố > 3 => p không chia hết cho 3 

=> p2 không chia hết cho 3 => p2 chia 3 dư 1

=> \(p^2-1⋮3\left(1\right)\)

+ Do p nguyên tố > 3 => p lẻ => p2 lẻ

=> p2 chia 8 dư 1

=> \(p^2-1⋮8\left(2\right)\)

Từ (1) và (2), do (3;8)=1 => \(p^2-1⋮24\left(đpcm\right)\)

30 tháng 1 2021

Sửa đề: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\\abc=2021\end{cases}}\) thì \(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\) là số chính phương

Ta có: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\\abc=2021\end{cases}}\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\left(abc\ne0\right)\)

Khi đó ta có: \(\hept{\begin{cases}1+a^2=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right)\\1+b^2=\left(b+c\right)\left(b+a\right)\\1+c^2=\left(c+a\right)\left(c+b\right)\end{cases}}\)

Nhân vế với vế ta được:

\(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

=> M là số chính phương

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

Bài 1:

Nếu $n$ không chia hết cho $7$ thì:

\(n\equiv 1\pmod 7\Rightarrow n^3\equiv 1^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 2\pmod 7\Rightarrow n^3\equiv 2^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 3\pmod 7\Rightarrow n^3\equiv 3^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 4\equiv -3\pmod 7\Rightarrow n^3\equiv (-3)^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)

\(n\equiv 5\equiv -2\pmod 7\Rightarrow n^3\equiv (-2)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

\(n\equiv 6\equiv -1\pmod 7\Rightarrow n^3\equiv (-1)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)

Vậy \(n^3-1\vdots 7\) hoặc \(n^3+1\vdots 7\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2018

b)

Đặt \(A=mn(m^2-n^2)(m^2+n^2)\)

Nếu $m,n$ có cùng tính chẵn lẻ thì \(m^2-n^2\) chẵn, do đó \(A\vdots 2\)

Nếu $m,n$ không cùng tính chẵn lẻ, có nghĩa trong 2 số $m,n$ tồn tại một số chẵn và một số lẻ, khi đó \(mn\vdots 2\Rightarrow A\vdots 2\)

Tóm lại, $A$ chia hết cho $2$

---------

Nếu trong 2 số $m,n$ có ít nhất một số chia hết cho $3$ thì \(mn\vdots 3\Rightarrow A\vdots 3\)

Nếu cả hai số đều không chia hết cho $3$. Ta biết một tính chất quen thuộc là một số chính phương chia $3$ dư $0$ hoặc $1$. Vì $m,n$ không chia hết cho $3$ nên:

\(m^2\equiv n^2\equiv 1\pmod 3\Rightarrow m^2-n^2\vdots 3\Rightarrow A\vdots 3\)

Vậy \(A\vdots 3\)

-----------------

Nếu tồn tại ít nhất một trong 2 số $m,n$ chia hết cho $5$ thì hiển nhiên $A\vdots 5$

Nếu cả 2 số đều không chia hết cho $5$. Ta biết rằng một số chính phương khi chia $5$ dư $0,1,4$. Vì $m,n\not\vdots 5$ nên \(m^2,n^2\equiv 1,4\pmod 5\)

+Trường hợp \(m^2,n^2\) cùng số dư khi chia cho $5$\(\Rightarrow m^2-n^2\equiv 0\pmod 5\Rightarrow m^2-n^2\vdots 5\Rightarrow A\vdots 5\)

+Trường hợp $m^2,n^2$ không cùng số dư khi chia cho $5$

\(\Rightarrow m^2+n^2\equiv 1+4\equiv 0\pmod 5\Rightarrow m^2+n^2\vdots 5\Rightarrow A\vdots 5\)

Tóm lại $A\vdots 5$

Vậy \(A\vdots (2.3.5)\Leftrightarrow A\vdots 30\) (do $2,3,5$ đôi một nguyên tố cùng nhau)

Ta có đpcm.

17 tháng 4 2017

a) phân tích nhân tử có cái trong ngoặc bằng (\(m^2-1\))\(\left(m+3\right)\)=(m-1)(m+1)(m+3)

có 3 số trên là 3 số chẵn liên tiếp suy ra tích trên chia hết cho 8 mà tích 3 số chẵn liên tiếp luôn chia hết cho6 nên tích trên chia hết cho 48

b)có \(5^{2n}\)đồng dư với 25 (mod của 19) mà 25 đồng dư với 6(mod của 19) suy ra \(5^{2n}\)đồng dư với \(6^n\)(mod của 19) nên cái trong ngoặc đồng dư với \(6^n\left(7+12\right)\)=\(6^n\).19 đồng dư với 0 ( mod của 19) suy ra đpcm