Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hợp số. vì p > 3 => p khong chia hết cho 2
=>p2 khong chia het cho 2
=> p2 + 2003 chia hết cho 2
mà p2 + 2003 khác 2
=> p2+2003 là hợp số
\(\hept{\begin{cases}p>3\\2p+1\end{cases}\Rightarrow p=3k+2}\left(k\ge1\right)\)nếu là 3k+1=> 2p+1=6k+3 không nguyên tố
với p=3k+2=> 4p+1=4(3k+2)+1=12k+9 luôn chia hết cho 3=> Hợp số => dpcm
Số nguyên tố > 3 luôn tồn tại dưới dạng 3k + 1 hoặc 3k + 2
Nếu p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3
Vậy p không tồn tại ở dạng 3k + 1
=> p = 3k + 2
=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3
Mà các số nguyên tố lớn hơn 3 đều là số lẻ
=> p + 1 là số chẵn <=> chia hết cho 2
p + 1 vừa chia hết cho 2 , vừa chia hết cho 3
=> p + 1 chia hết cho 6
P là SNT lớn hơn 3 nên P lẻ
Nên p2 lẻ => p2 + 2009 chẵn (p2 + 2009 > 2)
Vậy p2 + 2009 là hợp số (chia hết cho 2)
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.
Nếu p=3k+1 => p+8=3k+9 (chia hết cho 3) =>trái với đề bài
Vậy p=3k+2.
P=3k+2 => p+10=3k+12 (chia hết cho 3) => p+10 là hợp số
Do p là số nguyên tố > 3 nên p có dạng 3k+1 hoặc 3k+2 (k>0)
+ Với p có dạng 3k+1, ta có: (3k+1)2+2018=6k+1+2018=6k+2019(3k+1)2+2018=6k+1+2018=6k+2019⋮3
+ Với p có dạng 3k+2, ta có:(3k+2)2+2018=6k+4+2018=6k+2022(3k+2)2+2018=6k+4+2018=6k+2022⋮2, 3, 4, ...
Vậy, với p là số nguyên tố >3 thì p2+2018 là hợp số
Số chính phương luôn có dạng là 3k, 3k+1(hỏi cách chứng minh cũng được)
Số nguyên tố lớn hơn 3 không chia hết cho 3 vậy không thể có dạng là 3k
Vậy p2 thuộc 3k+1
Mà 2018=3a+2
Vậy p2+2018=3k+1+3a+2=3(k+a)+3
Nên p2+2018 chia hết cho 3
=>p2+2018 là hợp số