\(\frac{\sqrt{x}+2}{\sqrt{x}+1}\)  , Tìm GTLN của P

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}=1+\frac{1}{\sqrt{x}+1};P_{min}\Leftrightarrow\)

\(\frac{1}{\sqrt{x}+1}đạtGTNN\Leftrightarrow\sqrt{x}=1\Leftrightarrow P=1+\frac{1}{2}=\frac{3}{2}\)

13 tháng 9 2016

a/ Ta có

P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)

\(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)

14 tháng 9 2016

mình muốn hỏi câu b cơ bạn ơi

2 tháng 6 2019

\(A=\)\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

   \(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\) \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(-\frac{\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+x+1\right)}\)

   \(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

    =   \(\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+x+1}\)

học tốt

2 tháng 6 2019

\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)

\(A=\frac{x+2}{\sqrt{x}^3-1^3}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-1\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

Ta có : x + 1 \(\ge\)\(2\sqrt{x}\)nên \(x+\sqrt{x}+1\ge3\sqrt{x}\)

\(\Rightarrow A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\le\frac{\sqrt{x}}{3\sqrt{x}}=\frac{1}{3}\)

Vậy GTLN của A là \(\frac{1}{3}\)\(\Leftrightarrow x=1\)

6 tháng 8 2016

a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\) 

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3}{\sqrt{x}+3}\)

 

 

 

 

19 tháng 3 2017

Ta đặt \(x=tanA;y=tanB;z=tanC\) với \(ABC\) là các góc tam giá từ đây cần c/m

\(sinA+sinB+sinC\le\frac{3\sqrt{3}}{2}\)

tài liệu c/m BĐT này đầy trên mạng bn có thể tham tham khảo

VD:Cm : sinA+sinB+sinC bé hơn hoặc bằng (3* căn3)/2? | Yahoo Hỏi & Đáp

19 tháng 3 2017

Dự đoán khi \(x=y=z=\frac{1}{\sqrt{3}}\) thì ta tìm được \(P=\frac{3\sqrt{3}}{2}\)

Ta sẽ chứng minh nó là GTNN

Thật vậy, ta cần chứng minh 

\(Σ\frac{1}{\sqrt{x^2+xy+xz+yz}}\le\frac{3\sqrt{3}}{2\sqrt{xy+xz+yz}}\left(xy+yz+xz=1\right)\)

\(\LeftrightarrowΣ\sqrt{x+y}\le\frac{3\sqrt{3\left(x+y\right)\left(x+z\right)\left(y+z\right)}}{2\sqrt{xy+xz+yz}}\)

Nhưng theo BĐT Cauchy-Schwarz ta có: 

\(\left(Σ\sqrt{x+y}\right)^2\le\left(1+1+1\right)Σ\left(x+y\right)=6\left(x+y+z\right)\)

Như vậy, ta còn phải chứng minh :

\(\sqrt{6\left(x+y+z\right)}\le\frac{3\sqrt{3\left(x+y\right)\left(x+z\right)\left(y+z\right)}}{2\sqrt{xy+xz+yz}}\)

\(\Leftrightarrow9\left(x+y\right)\left(x+z\right)\left(y+z\right)\ge8\left(x+y+z\right)\left(xy+xz+yz\right)\)

\(\LeftrightarrowΣz\left(x-y\right)^2\ge0\) luôn đúng. Nên \(P_{Min}=\frac{3\sqrt{3}}{2}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

ĐK: $x\geq 0; x\neq 1$

$P=\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$

$=\frac{1}{\sqrt{x}-1}=-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x-1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$

$=\frac{x+\sqrt{x}+1-(x+2)-(x-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$

$=\frac{-\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}$

$\Rightarrow Q=\frac{2(x+\sqrt{x}+1)}{-\sqrt{x}}+\sqrt{x}$

$=-\left(\sqrt{x}+\frac{2}{\sqrt{x}}+2\right)$

Dễ thấy $\sqrt{x}+\frac{2}{\sqrt{x}}+2\geq 2\sqrt{2}+2$ theo BĐT Cô-si

$\Rightarrow Q\leq -(2\sqrt{2}+2)$ hay $Q_{\max}=-(2\sqrt{2}+2)$

 

18 tháng 11 2019

a) \(x\ge0\)đặt \(\sqrt{x}=a\ge0\)

\(A=\frac{2a}{a^2-a+1}\Leftrightarrow A.a^2+A-2a=0\Leftrightarrow A.a^2-\left(A+2\right)a+A=0\)

\(\Delta=\left(A+2\right)^2-4A^2=-3A^2+4A+4\ge0\Rightarrow A\le2\)

\(\Rightarrow A_{max}=2\) khi  \(x=1\)

b) 

\(x\ge0\)

\(B=-\left(x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{4}=-\left(\sqrt{x-\frac{1}{2}}\right)^2-\frac{7}{4}\le\frac{-7}{4}\)

\(\Rightarrow B_{max}=\frac{-7}{4}\) khi \(\sqrt{x=}\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

c) \(x\ge0\)

\(C=-2+\sqrt{x}-1=-2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)-\frac{7}{8}\)

\(C=-2\left(\sqrt{x}-\frac{1}{4}\right)^2\frac{7}{8}\le\frac{-7}{8}\)

\(C_{max}=\frac{-7}{8}\)khi đó \(x=\frac{1}{16}\)

NM
18 tháng 10 2021

ta có :

undefined

19 tháng 10 2021

Cho mình hỏi câu a của bạn phân số đầu tiên bạn vứt mất x ở mẫu của mik đâu rồi