K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

mk chỉ cần phần c thui nha!!!!!!!

24 tháng 3 2019

c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)

Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)

\(\Rightarrow M>N\) 

22 tháng 12 2017

\(A=8^{2017}-8^{2016}+...+8-1\)

\(8A=8^{2018}-8^{2017}+...+8^2-8\)

\(8A+A=\left(8^{2018}-8^{2017}+...+8^2-8\right)+\left(8^{2017}-8^{2016}+...+8-1\right)\)

\(9A=8^{2018}-8^{2017}+...+8^2-8+8^{2017}-8^{2016}+...+8-1\)

\(9A=8^{2018}-1\)

\(9A+1=8^{2018}-1+1=8^{2018}=8^{n+2006}\)

=>n+2006=2018

=>n=12

28 tháng 7 2018

a) \(2\left(x^2-4\right)^4+5\left(y^3+8\right)^2=0\)

Có 2\(\left(x^2-4\right)^4\)\(5\left(y^3+8\right)^2\ge0\)

\(2\left(x^2-4\right)^4+5\left(y^3+8\right)^2=0\)

=> \(2\left(x^2-4\right)^4=0\)\(5\left(y^3+8\right)=0\)

+) \(2\left(x^2-4\right)^4=0\) => \(x^2-4=0=>x^2=4=>x=2\)

b) \(3\left|2x^2-8\right|+7\left(2y-1\right)^2=0\)

\(3\left|2x^2-8\right|\ge0\) ; \(7\left(2y-1\right)^2\ge0\)

Mà ​​​​​​\(3\left|2x^2-8\right|+7\left(2y-1\right)^2=0\)

=> \(3\left|2x^2-8\right|=0\) ; \(7\left(2y-1\right)^2=0\)\

+) ​​\(3\left|2x^2-8\right|=0\) => \(2x^2-8=0=>2x^2=8=>x^2=4=>x=2\)

+) \(7\left(2y-1\right)^2=0\)

=> 2y-1=0

=> 2y = 1

=> y= \(\dfrac{1}{2}\)

5 tháng 7 2019

1, CÓ( X+1,5)8 VÀ (2,7 -Y)12> HOẶC = 0

         MÀ (X+1,5)8 + (2,7-Y)12  =0

    SUY RA   \(\hept{\begin{cases}X+1,5=0\\2,7-Y=0\end{cases}}\)

      SUY RA\(\hept{\begin{cases}X=-1,5\\Y=2,7\end{cases}}\)

28 tháng 6 2017

a, \(\left(x+1\right)^8=16\left(x+1\right)^4\)

\(\Rightarrow\left(x+1\right)^8-16\left(x+1\right)^4=0\)

\(\Rightarrow\left(x+1\right)^4\left[\left(x+1\right)^4-16\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^4=0\\\left(x+1\right)^4-16=0\end{matrix}\right.\)

+) \(\left(x+1\right)^4=0\Rightarrow x=-1\)

+) \(\left(x+1\right)^4-16=0\Rightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy x = -1 hoặc x = 1 hoặc x = -3

b, Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+1\right)^8\ge0\end{matrix}\right.\Rightarrow\left(x-1\right)^2+\left(y+1\right)^8\ge0\)

\(\left(x-1\right)^2+\left(y+1\right)^8=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+1\right)^8=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Vậy x = 1 và y = -1

c, Ta có: \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+\left(y+1\right)^2+1\ge1\)

Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy \(MIN_{\left(x-3\right)^2+\left(y+1\right)^2+1}=1\) khi x = 3, y = -1