Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A = 20203 và B = 2019. 2020. 2021. Không tính cụ thể các giá trị của A và B, hãy so sánh A và B.
2019 nhân 100 thì bằng 201900 > 20203
2020.2021 lớn hơn 100 suy ra b lớn hơn a
2020.2022=(2021−1)(2021+1)=20212−1<\(2021^2\)
\(\Rightarrow2020.2021.2022< 2021^2.2021=2021^3\)
\(B=\left(2021-1\right)\left(2021+1\right).2021=\left(2021^2-1\right).2021=2021^3-2021< A\)
xét A và B có :
\(\frac{42}{47}\)<\(\frac{42}{45}\) (1)
theo tính chất bắc cầu ta có ;
\(\frac{37}{51}\)+\(\frac{14}{51}\)=1 ; \(\frac{29}{37}\)+\(\frac{8}{37}\)=1
\(\frac{31}{35}\)+\(\frac{4}{35}\)=1 ; \(\frac{49}{63}\)+\(\frac{14}{63}\)=1
Mà \(\frac{14}{51}\)>\(\frac{14}{63}\)=> \(\frac{37}{51}\)< \(\frac{49}{63}\)(2)
ta lại có : \(\frac{4}{35}\)=\(\frac{8}{70}\)( nhân cả tử và mẫu vs 2 )
mà \(\frac{8}{70}\)<\(\frac{8}{37}\)nên \(\frac{4}{35}\)<\(\frac{8}{37}\)=>\(\frac{29}{37}< \frac{31}{35}\)(3)
Từ (1) ; (2);(3)=>\(\frac{42}{47}+\frac{37}{51}+\frac{29}{37}< \frac{42}{45}+\frac{49}{63}+\frac{31}{35}\)
\(B=2020.2021.2022=\left(2021-1\right).2021.\left(2021+1\right)=\left[\left(2021-1\right)\left(2021+1\right)\right].2021=\left(2021^2-2021+2021-1\right).2021=\left(2021^2-1\right).2021=2021^3-2021< 2021^3=A\)
vậy B<A
\(B=2020.2021.2022\\ B=\left(2021-1\right).2021.\left(2021+1\right)\\ B=\left(2021^2-1\right).2021\\ B=2021^3-2021\\ \Rightarrow A>B\)
Tham khảo:https://hoc24.vn/cau-hoi/cho-a-20213-va-b-202020212022-khong-tinh-cu-the-cac-gia-tri-cua-a-va-b-hay-so-sanh-a-va-b-ai-lam-giup-mik-voi.3007463332171