K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

22 tháng 5 2016

Câu 2 nè:

Ta có:2006 = 2.17.59

Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006

Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.

Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59

suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.

- Đặt S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}\)

\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{58}=\frac{A}{B}\)(trong đó B ko chia hết 59)

\(\Rightarrow S=\frac{A}{B}+\frac{1}{59}=\frac{\left(59A+B\right)}{59B}=\frac{p}{q}\)

hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)

Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt \(\frac{1}{50}+\frac{1}{52}+...+\frac{1}{58}=\frac{C}{D}\) ta cũng có D ko chia hết cho 17

Chứng minh tương tự suy ra q chia hết cho 59, 17, 2

=>đpcm

22 tháng 5 2016

nếu đề có thêm điều kiện n nhỏ nhất thì làm như vậy còn ko thì chỉ chép đến chỗ dấu       "'*"  thui

19 tháng 10 2016

ngu người bài này mà không biết giải

Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi 

AH
Akai Haruma
Giáo viên
26 tháng 9 2017

Lời giải:

1)

Ta có : \(A=81^7-27^9-9^{13}=(3^4)^7-(3^3)^9-(3^2)^{13}\)

\(\Leftrightarrow A=3^{28}-3^{27}-3^{26}=3^{26}(3^2-3-1)\)

\(\Leftrightarrow A=5.3^{26}=405.3^{22}\)

Do đó \(A\vdots 405\) (đpcm)

2)

Ta thấy : \(12^{2}\equiv 11\pmod {133}\)

\(\Rightarrow 12^{2n+1}\equiv 11^{n}.12\pmod {133}\)

\(\Rightarrow 12^{2n+1}+11^{n+2}\equiv 11^n.12+11^{n+2}\pmod {133}\)

\(\Leftrightarrow 12^{2n+1}+11^{n+2}\equiv 11^n(12+11^2)\equiv 11^n.133\equiv 0\pmod {133}\)

Do đó: \(12^{2n+1}+11^{n+2}\vdots 133\) (đpcm)

3)

Ta thấy \(A=5x+2y;B=9x+7y\Rightarrow 3A+4B=51x+34y\)

Vì \(51\vdots 17;34\vdots 17\Rightarrow 3A+4B\vdots 17\)

Nếu \(A\vdots 17\Rightarrow 4B\vdots 17\). Mà $(4,17)$ nguyên tố cùng nhau nên \(B\vdots 17\)

Do đó ta có đpcm.

28 tháng 9 2018

câu 1 số 5 là sao vậy bạn và đpcm là gì vậy

21 tháng 10 2017

b) n3 + 6n2 + 8n

= n( n2 + 6n + 8)

= n( n2 + 2n + 4n + 8)

= n[ n( n +2) + 4( n +2)]

= n( n +2)( n + 4)

Do n chẵn nên ta đặt : 2k = n

Ta có : 2k( 2k +2)( 2k +4)

= 2k.2( k +1)2( k +2)

= 8k( k + 1)( k +2)

Do : k;( k +1);( k +2) là 3 STN liên tếp sẽ chia hết cho 2,3

Suy ra : k( k + 1)( k +2) chia hết cho 6

Suy ra : 8k( k + 1)( k +2) chia hết cho 48


16 tháng 3 2019

a) 24= 2.3.4

(n^2+n-1)^2-1 = (n^2-1+1+n).(n^2+n+1+1)

=(n^2+n).(n^2+n+2)=n.(n-1).(n-1).(n-2)

Tích của 4 số nguyên liên tiếp luôn chia hết cho 2,3,4

Mà U(2,3,4)=1 =>(n^2+n-1)^2 chia hết cho 2.3.4

24 tháng 7 2019

undefined