Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Có CK//AB (cùng vuông góc BD)
=> góc BCK = góc ABC = góc ACB
=> CF là phân giác của tam giác ACI
=> CA/CI = FA/FI (1)
mà CF vuông góc CD (BC vuông góc CD, F thuộc đoạn BC)
=> CD là phân giác ngoài của tam giác ACI
=> CA/CI = DA/DI (2)
Từ (1) và (2) =>FA/FI = DA/DI (3)
Xét tam giác ABD có IK//AB
=> AB/IK = DA/DI (hệ quả định lí Talets) (4)
Xét tam giác CFI có CI// AB
=> AB/CI = FA/FI (hệ quả định lí Talets) (5)
Từ (3), (4), (5) => IK= CK => đpcm
Chúc bạn học tốt
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK
1)
c) Ta có : CK // AB ( \(\perp\)BD )
Xét \(\Delta ABD\)theo định lí Ta-let,ta có :
\(\frac{IK}{AB}=\frac{KD}{BD}\Rightarrow IK.BD=AB.KD\)( 1 )
Xét \(\Delta ABO\)và \(\Delta CKD\)có
\(\widehat{ABO}=\widehat{CKD}=90^o\); \(\widehat{AOB}=\widehat{CDK}\)( cùng bù \(\widehat{CBD}\))
\(\Rightarrow\Delta ABO\approx\Delta CKD\left(g.g\right)\)
\(\Rightarrow\frac{KD}{BO}=\frac{CK}{AB}\Rightarrow CK.BO=KD.AB\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(CK.BO=IK.BD=IK.2BO\)
\(\Rightarrow CK=2IK\)\(\Rightarrow\)I là trung điểm của CK
2)
c) dễ thấy AM = AN \(\Rightarrow\Delta AMN\)cân tại A \(\Rightarrow\widehat{AMN}=\widehat{ANM}\)( 1 )
vì H là trung điểm dây BC nên \(OH\perp BC\)hay \(\widehat{AHO}=90^o\)
Từ đó dễ dàng suy ra 5 điểm A,M,O,H,N cùng thuộc 1 đường tròn
\(\Rightarrow\)Từ giác AMHN nội tiếp \(\Rightarrow\widehat{AHN}=\widehat{AMN};\widehat{AHM}=\widehat{ANM}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{AHN}=\widehat{AHM}\)\(\Rightarrow\)HA là tia phân giác \(\widehat{MHN}\)
d) BE // AM \(\Rightarrow\widehat{EBH}=\widehat{MAB}\)
\(\widehat{MAH}=\widehat{MNH}\)( do tứ giác AMHN nội tiếp )
\(\Rightarrow\widehat{EBH}=\widehat{MNH}\)\(\Rightarrow\)Tứ giác EBNH nội tiếp
\(\Rightarrow\widehat{EHB}=\widehat{ENB}\)
Mặt khác : \(\widehat{ENB}=\widehat{MCB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)
Suy ra \(\widehat{EHB}=\widehat{MCB}\Rightarrow HE//MC\)
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2)suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC(3)
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
hay BC\(\perp\)CD(4)
Từ (3) và (4) suy ra OA//CD
hay \(\widehat{AOC}=\widehat{BDC}\)