Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác OAC và tam giác OBD ta có :
\(\left\{{}\begin{matrix}OA=OB\\OC=OD\\\widehat{AOC}=\widehat{BOD}\end{matrix}\right.\)
\(\Rightarrow\Delta OAC=\Delta OBD\left(c-g-c\right)\)
\(\Rightarrow AC=BD\Rightarrow\stackrel\frown{AC}=\stackrel\frown{BD}\)
\(\widehat{AOB}=30^0\Rightarrow AB=2R.sin15^0=\frac{\sqrt{6}-\sqrt{2}}{2}R\)
\(\Rightarrow\) Độ dài đường tròn đường kính AB: \(AB.\pi=\frac{\sqrt{6}-\sqrt{2}}{2}\pi R\)
a. Xét \(\Delta OAB:\)\(AB^2=2R^2\)
\(OA^2+OB^2=R^2+R^2=2R^2\)
Vậy \(\Delta OAB\) vuông tại O.
\(\Rightarrow l_{\stackrel\frown{AB}}=\frac{\pi R.90}{180}=\frac{1}{2}\pi R\)
Có: \(l_{\stackrel\frown{BC}}=l_{\stackrel\frown{AC}}-l_{\stackrel\frown{AB}}\)\(=\frac{\pi R.120}{180}-\frac{1}{2}\pi R\)\(=\frac{1}{6}\pi R\)
c.Ace Legona, Nguyễn Việt Lâm tính giùm mk.
O A C H
\(\widehat{AOC}=120^0\Rightarrow\widehat{AOH}=60^0\)
\(\Rightarrow AH=OA.sin\widehat{AOH}=R.sin60^0=\frac{R\sqrt{3}}{2}\)
\(\Rightarrow AC=2AH=R\sqrt{3}\)
O B C P
\(\widehat{BOC}=\widehat{AOC}-\widehat{AOB}=30^0\)
Kẻ \(CP\perp OB\Rightarrow\left\{{}\begin{matrix}CP=OC.sin\widehat{POC}=R.sin30^0=\frac{R}{2}\\OP=OC.cos\widehat{POC}=R.cos30^0=\frac{R\sqrt{3}}{2}\end{matrix}\right.\)
\(BP=OB-OP=R-\frac{R\sqrt{3}}{2}=\frac{R\left(2-\sqrt{3}\right)}{2}\)
Áp dụng Pitago cho tam giác BCP:
\(BC=\sqrt{BP^2+CP^2}=R\sqrt{2-\sqrt{3}}\)