Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ACBO có \(\widehat{CAO}+\widehat{CBO}=90^0+90^0=180^0\)
nên ACBO là tứ giác nội tiếp
b: Xét tứ giác OIBD có \(\widehat{OID}=\widehat{OBD}=90^0\)
nên OIBD là tứ giác nội tiếp
=>\(\widehat{IBO}=\widehat{IDO}\)
c: Xét tứ giác OAEI có \(\widehat{OAE}+\widehat{OIE}=90^0+90^0=180^0\)
nên OAEI là tứ giác nội tiếp
=>\(\widehat{OEI}=\widehat{OAI}\)
=>\(\widehat{OEI}=\widehat{OAB}=\widehat{OBA}=\widehat{IBO}\)
=>\(\widehat{OEI}=\widehat{ODI}\)
=>ΔOED cân tại O
=>OE=OD
a) Ta có \(\sin\widehat{OAB}=\frac{OB}{OA}=\frac{1}{2}\). Suy ra \(\widehat{BAC}=2\widehat{OAB}=60^0\)
Vì AB = AC nên \(\Delta ABC\) đều. Vậy \(BC=AB=OB\sqrt{3}=R\sqrt{3}\)
Gọi I là tiếp điểm của FN với (O). Ta có:
\(\widehat{MON}=\widehat{IOM}+\widehat{ION}=\frac{1}{2}\left(\widehat{IOB}+\widehat{IOC}\right)=\frac{1}{2}\widehat{BOC}=60^0=\widehat{MCN}\)
Suy ra tứ giác MNCO nội tiếp.
b) Theo hệ thức lượng: \(\overline{AH}.\overline{AO}=AB^2=\overline{AD}.\overline{AE}\). Suy ra tứ giác DHOE nội tiếp
Ta thấy \(OD=OE,HO\perp HB\), do đó HO,BC là phân giác ngoài và phân giác trong \(\widehat{DHE}\)
Dễ thấy D và P đối xứng nhau qua OA vì dây cung \(DP\perp OA\)
Vì \(\widehat{DHE}+\widehat{DHP}=2\left(\widehat{DHB}+\widehat{DHA}\right)=180^0\) nên P,H,E thẳng hàng.
c) Do N,O,E thẳng hàng nên \(\widehat{DOE}=180^0-\widehat{MON}=120^0\). Suy ra \(DE=R\sqrt{3}\)
Theo hệ thức lượng thì:
\(AD.AE=AB^2\Rightarrow AD^2+AD.DE=AB^2\)
\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-\left(\frac{AB}{DE}\right)^2=0\)
\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-1=0\) vì \(AB=DE=R\sqrt{3}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{AD}{DE}=\frac{-1+\sqrt{5}}{2}\left(c\right)\\\frac{AD}{DE}=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\) vì \(\frac{AD}{DE}>0\)
\(\Rightarrow\frac{AD}{AE}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}.\)
a) Dễ thấy tứ giác IBAC là tứ giác nội tiếp. Vậy thì \(\widehat{CIA}=\widehat{CBA};\widehat{BIA}=\widehat{BCA}\)
Mà \(\widehat{CBA}=\widehat{BCA}\Rightarrow\widehat{CIA}=\widehat{BIA}\) hay IA là phân giác góc BIC.
b) Do KD // AB nên \(\widehat{EDK}=\widehat{EAB}\) (Đồng vị)
Mà \(\widehat{EAB}=\widehat{ICB}\) (Góc nội tiếp cùng chắn cung IB)
Nên \(\widehat{IDH}=\widehat{ICH}\Rightarrow\) tứ giác IHDC nội tiếp. Vậy thì \(\widehat{HID}=\widehat{HCD}\) (cùng chắn cung HD)
Mà \(\widehat{HCD}=\widehat{BED}\) (góc nội tiếp cùng chắn cung BD)
nên \(\widehat{HID}=\widehat{BED}\Rightarrow\) IH // EB
Xét tam giác EKD có I là trung điểm ED, IH // EK nên IH là đường trung bình hay H là trung điểm DK.